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Text

• Chapter 2.2: the reference to Righi et al. [2014] was added.

• Chapter 3.2.2: the paragraph on Eisenman et al. [2014] has been deleted.

• Chapter 4.1: a section “ 4.1.5 - Statistical Significance Test“ has been added.

• Chapter 5: statements on skill or differences in skill of statistically not significant
magnitude were removed.

• Chapter 5.1.1: a paragraph on the agreement in statistically significant values between
Pohlmann et al. [2013] and the ESMValTool was added.

• Chapter 5.2: a sentence on the exclusive assessments of statistically significant values
was added.

• Chapter 5.2.2: the paragraph on a missing significance test has been deleted.

• Chapter 5.3: the statements in the paragraph on Eisenman et al. [2014] have been
weakened.

• Chapter 5.3.1: a sentence about the mostly insignificant differences among the decadal
prediction systems in the Antarctic has been added.

• Chapter 5.3.2: a sentence on the implementation of a significance test has been deleted.
Additionally, a significant improvement from pr over long-term simulations was identified
in the Ross Sea.

• Chapter 6: a paragraph on the implementation of a significance test has been deleted.

Figures

• Figures 5.1 through 5.11: crosses have been added denoting skill or differences in skill
exceeding the 5-95% confidence level.



• Figure 5.12: now, only grid cells containing statistically significant skill are considered
for global averages

• Figures 5.13 through 5.15: black dots have been added denoting skill or differences
in skill exceeding the 5-95% confidence level.



Abstract

Decadal climate predictions, that aim at predicting the time horizon of the next
10-30 years, are a relatively new field of research. An open science topic is whether
the initialization of the climate model simulations with observations of the slowly-
varying components of the climate system results in more accurate near-term pre-
dictions compared to uninitialized long-term simulations. To address this science
question, Goddard et al. [2013] introduced a verification system for decadal ex-
periments that enables a quantitative assessment of the model performance from
the decadal predictions compared to observations and to uninitialized long-term
simulations.

The goal of this thesis is to assess the possible additional predictive skill for near-
surface temperature and sea-ice concentrations in the decadal simulations of the
Max Planck Institute Earth System Model (MPI-ESM) compared to the uninitial-
ized long-term simulations. To allow this assessment, the verification framework
from Goddard et al. (2013) is implemented into the Earth System Model Valida-
tion Tool (ESMValTool). The ESMValTool is a software tool developed by multiple
institutions that aims at improving routine Earth system model (ESM) evaluation.
For this work, in particular the anomaly correlation skill, reliability and accuracy of
the simulations are evaluated and tested against each other, the model’s uninitial-
ized long-term simulations, and observations.

No further prediction skill in global mean near-surface temperature is found for
decadal hindcasts (i.e., retrospective forecasts) in comparison to the long-term
simulations, except for the initialization year 1. In the following years, the decadal
hindcasts drift to their preferred biased model state resulting in a prediction skill
that is similar to that of the long-term simulations. On regional scales however,
certain areas such as southwest of the South American continent and the North
Atlantic Ocean show a significantly higher predictive skill. This regionality also
translates to sea ice.

Further studies are required that expand the proposed metrics and include dif-
ferent variables and additional climate models to provide a concluding answer to
the question of whether the initialization of climate models can lead to a higher
predictability of near-future climate change.
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Chapter 1

Introduction

The ability to understand and project near-term future climate is of fundamental interest to
society. Policy makers require comprehensive and detailed information about the near-term
climate state to be able to react to changes in climate. In order to address these demands,
work on decadal climate simulations has become a growing international effort over the recent
years (e.g., Smith et al. [2007]; Meehl et al. [2009]; Solomon et al. [2011]).

These decadal predictions differ from the long-term climate simulations that are performed
since the beginning of the Coupled Model Intercomparison Project (CMIP) in this regard that
some slow-varying components of the Earth system, in particular the ocean, are initialized
with observations [Meehl et al., 2009; Pohlmann et al., 2009; Goddard et al., 2012]. The same
models as used for long-term climate projections are initialized with observational data at the
starting time of the decadal simulation. With this initialization, the simulations start from a
climate state that better matches the phase of the observed climate.

Decadal predictions have been included for the first time also in the experiment protocol of the
5th phase of CMIP (i.e., CMIP5) [Taylor et al., 2012]. The CMIP5 decadal model simulations
are initialized in 1960 and then continuously every year until 2005 to provide a set of hindcast
simulations to test the performance compared to observations and to long-term simulations.
For each simulation, a minimum number of three ensembles is suggested.

A comparison of the decadal simulations to long-term simulations and to observations has
been carried out both qualitatively (i.e., Bräu [2013]) and quantitatively (i.e., Pohlmann et al.
[2009]; Müller et al. [2012]; Holland et al. [2013]), with the present work falling into the latter
group. More specifically, this thesis is aimed at contributing to the answer of the question,
whether the initialization of climate models can lead to more accurate, reliable and skillful
predictions of the future climate compared to the uninitialized simulations.

To evaluate the performance, a verification system for decadal climate predictions that has
been introduced by Goddard et al. [2013] has been implemented into the Earth System Model
Validation Tool (ESMValTool). This verification system calculates multiple skill measures that
each aim to quantify a different aspect of forecast quality. The ESMValTool is an open source
package that allows for the evaluation and routine benchmarking of Earth system models
(ESMs) and is available at http://www.pa.op.dlr.de/ESMValTool/. These metrics con-
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sist of the anomaly correlation skill, the conditional bias and the mean squared skill score
(MSSS), that evaluate the model’s hindcast skill, reliability and accuracy, respectively, by test-
ing decadal hindcast or long-term simulations against observations.

The goal of this work is to assess the predictive skill for near-surface air temperature and
sea-ice concentrations in the Max Planck Institute Earth System Model (MPI-ESM) decadal
prediction system, a coupled climate model embedded in the MiKlip (Mittelfristige Klimaprog-
nosen) project. The MPI-ESM has contributed both long-term [Giorgetta et al., 2013] and
decadal [Müller et al., 2012; Pohlmann et al., 2013] simulations to CMIP5. The evaluations
for temperature data hereby extend the studies of Pohlmann et al. [2013], who examined
the hindcast skill of different MPI-ESM decadal model versions, whereas the sea-ice assess-
ments directly build on the studies of Hübner [2013] and Notz et al. [2013], as well as Bräu
[2013], who qualitatively evaluated the representation of sea ice in the MPI-ESM long-term
and decadal simulations, respectively.

Before the verification system is used for this assessment, the calculations produced with the
verification system implemented into the ESMValTool are compared to previous studies. The
MPI-ESM currently provides three different decadal prediction systems. Therefore in a second
step, the strategy for the evaluation of both temperature and sea ice is to first find the system
with the highest overall predictive skill. Finally, this system is then tested against the unini-
tialized long-term simulations. The evaluation is done for different lead times, i.e. temporal
smoothing of different time ranges within the forecast range of each experiment [Goddard
et al., 2013]. This method gives an indication of the dependence of predictive skill on the
forecasts’ proximity to the point of initialization.

The thesis is structured in the following way. Chapter 2 gives an overview of decadal climate
simulations, their difference to long-term projections, initialization methods and drift issues,
as well as of the structure and capabilities of the ESMValTool. In Chapter 3, the MPI-ESM
and its simulations and the observational datasets used for the evaluation are described. A de-
tailed presentation of the implemented verification system with both its required preprocessing
steps and the metric calculations is given in Chapter 4. Results of the temperature and sea-ice
assessments are presented in Chapter 5. Chapter 6 closes with a summary and an outlook.
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Chapter 2

Scientific Background

2.1 Decadal Climate Predictions

Climate change does not only occur on century time scale, but also impacts on a shorter time
range with possible changes of extreme events [IPCC, 2013] or hurricane activity [Goldenberg
et al., 2001], for example. Adapting to these near-term changes represents a growing need
among society, policy and decision makers, as their planning horizon lies in the magnitude of
10-30 years: the ”decadal” time scale [Meehl et al., 2009]. Thus, it is important to closer inves-
tigate the changing climate on this time scale. Hereby, natural internal variability plays a major
role. Long-term predictions of climate models are aimed at predicting changes of the climate
system as a response to changes in natural and anthropogenic forcings [Smith et al., 2014].
Decadal simulations form a new area of research where the models are initialized with observa-
tions for the small varying components (such as the ocean) in order for them to start from the
correct phase of the climate system’s natural variability [Meehl et al., 2014; Smith et al., 2014].

2.1.1 Initialization

Climate predictions of the decadal time range fill the gap between seasonal-to-interannual pre-
dictions and long-term projections [Meehl et al., 2009]. They thereby form a combination of
two time scales (Figure 2.1). Numerical weather forecasts that predict the atmospheric devel-
opment of the following days or weeks are initial value problems and thus have to be initialized
with observational data. Long-term climate projections on the other hand are uninitialized and
free-running and simulate changes in climate under varying boundary conditions for several
centuries [IPCC, 2013]. The time horizon of decadal climate predictions lies in between these
two, and because of that, they depend on both the initial values and the boundary conditions
[Pohlmann et al., 2009].

Variables that are being prescribed during the initialization process, mainly come from slow-
evolving components of the climate system, such as the ocean [Pohlmann et al., 2009]. Thus,
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Figure 2.1: Illustration of the dependence of decadal predictions on both initial values (sim-
ilar to numerical weather predictions) and boundary conditions (similar to long-term climate
projections). Figure from IPCC [2013].

most models are initialized with observed ocean temperature and salinity fields, but also sea-ice
and atmospheric variables may be initialized [Meehl et al., 2013].

For decadal climate predictions, the same models as for long-term simulations are used, and
after the initialization, the models are free-running for 10 to 30 years. To assess the predictive
skill of decadal experiments, retrospective forecasts, named “hindcasts”, are made by integrat-
ing from different start dates in the past. The following section describes recommendations
for the conduction of these hindcast experiments made by the CMIP5 protocol.

2.1.2 CMIP5 Protocol for Decadal Simulations

Realizations of decadal climate simulations are included in the 5th Phase of the Coupled
Model Intercomparison Project (CMIP5) that defines and coordinates a set of climate model
experiments aiming at the understanding of past and future climate changes [Taylor et al.,
2012]. Adding to recommendations for long-term experiments, CMIP5 for the first time defines
decadal prediction integrations (Figure 2.2). Decadal simulations with 10-year simulations ini-
tialized every 5 years from 1960 to 2005 and an additional set of hindcasts that are integrated
for 30 years each and started in 1960, 1980 and 2005 form the core of the CMIP5 design. Tier 1
simulations are additional experiments and sensitivity simulations, like alternative initialization
methods (see also Section 2.1.3), an increased ensemble size and higher initialization frequency.

The Max Planck Institute Earth System Model (MPI-ESM, see Chapter 3.1) has, among other
models, performed the decadal CMIP5 simulations. Figure 2.3 depicts a part (1996-2005) of
the experimental setup of the MPI-ESM-LR (low resolution) decadal system named baseline-0
(b0-LR) that closely follows the CMIP5 recommendations for the initialization frequency. The
vertical axis shows the different decadal experiments with their respective years of initializa-
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Figure 2.2: Overview of the core (inner circle) and tier 1 (outer ring) recommendations for
decadal prediction experiments by the CMIP5 protocol. Figure from Taylor et al. [2012].

tion, and the horizontal axis the occurrence of the forecasts in time [Bräu, 2013]. The numbers
indicate the number of ensemble members available for each experiment and forecast time.
Thus, the b0-LR prediction system is initialized every year with at least 3 ensemble members
running for 10 years and an additional 7 members that are initialized every 5 years (indicated
by orange shading). For the experiment ”decadal1980”, the forecast range is longer than ten
years, as 3 of the 10 ensemble members initialized in 1960, 1980 and 2005 are prolonged to
30 years (not shown).

2.1.3 Model Drift and Initialization Methods

In addition to differences in the experimental setups of the decadal predictions, initialization
techniques differ from model to model. More generally, there are two initialization methods:
full-field and anomaly initialization [Meehl et al., 2009; Goddard et al., 2013]. In the full-field
method, the model state at the time of the initialization is substituted with the observed state,
i.e. the estimated real state [Carrassi et al., 2014]. In contrast, the anomaly technique adds
observed anomalies to the model climatology.

Because models are imperfect and run freely after the initialization, the model drifts away
from the observed state towards its preferred model state. This problem is illustrated in Fig-
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Figure 2.3: Excerpt of the experimental setup of decadal simulations carried out by the MPI-
ESM-LR baseline-0 prediction system, depicting the number of ensemble members running for
each experiment and each prediction year between 1996 and 2005. The bottom row depicts
the total number of ensemble members available for each year. Table from Bräu [2013].

ure 2.4: each decadal hindcast simulation starts close to the observed state (black line) due
to the initialization. It then gradually “forgets“ the observational information, causing it to
drift towards the equilibrium state of the uninitialized simulation. In an attempt to correct
for this drift, the mean drift (i.e., mean bias) from all experiments is subtracted from each
decadal hindcast. This leads to an under-correction of the experiments with starting years
1960-1975, and to an over-correction of the hindcasts starting later than 1985, due to the dif-
fering background trend between the model and the observations. Thus, drift corrections need
to not only account for the time-independent mean bias, but also for the conditional bias, that
includes the estimated model drift over time. This concept is further explained in Chapter 4.2.3.

The problem of the model drift can also be partially overcome by employing the anomaly ini-
tialization method, that aims to predict future anomalies by assimilating observed anomalies
to the model climatology, keeping the initial model state closer to the observed state (e.g.
Smith et al. [2007]). Due to a large diversity of models and experimental setups, it is dif-
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Figure 2.4: Illustration of bias adjustment for decadal temperature hindcasts (colored solid
lines), that drift from the initialized observed state (black solid line) to their imperfect unini-
tialized model state (solid grey line). This bias is accounted for by subtracting the mean drift
(brown line in the inset) from each hindcast simulation, resulting in the bias-corrected hindcasts
(colored dashed lines). Figure from Meehl et al. [2013].

ficult to assess which initialization methods results in the most skillful predictions [Carrassi
et al., 2014]. A comparison of the prediction skill between the two initialization techniques
is made in this work for decadal model output of the MPI-ESM (see Chapters 5.2.1 and 5.3.1).

2.1.4 Long-term Projections Compared to Decadal Predictions

Long-term climate simulations are started from a control simulation in 1850 and are integrated
throughout the historical period into the future [Pohlmann et al., 2009]. In contrast, decadal
simulations each start from their individual point in time with prescribed observed variables.
This ensures that the decadal simulations start from the correct phase of the natural vari-
ability. Figure 2.5 illustrates this effect for global mean temperature anomalies. The ensemble
mean (green) of the initialized experiments (purple) starting in 1998 captures the observed
(black) local temperature maximum at this point in time much better than the ensemble mean
(red) of the uninitialized long-term simulations (yellow). After following the observations quite
closely for about three years, after 2001 the decadal ensemble mean begins to drift away from
the observed state and closer follows the long-term ensemble mean, not capturing the local
minimum of the year 2004, for example.

Hence, for the examination of predictive skill, the proximity of the simulations to its initializa-
tion time has to be accounted for. This is done via the selection of different time samples of
the forecasts, so-called ”lead years”. Goddard et al. [2013] recommend a set of four temporal
smoothing scales: year 1, years 2-5, years 2-9 and years 6-9. For technical details about the
lead-year selection and lead-time average calculation, please see Chapter 4.1.3.
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Figure 2.5: Global mean surface-temperature anomalies calculated with the reference period
1986-2005. Depicted are observations and ensembles of both long-term and decadal simulations
together with their respective ensemble means. Figure from [IPCC, 2013].

Year 1 is closest to the initialization and therefore is expected to have the highest prediction
skill. It is excluded from the three other lead-time ranges to reduce the imprint of the initial
conditions. The years 2-5 are still within the interannual time scale and possibly dominated
by year-to-year variability, whereas the years 2-9 might be able to capture the climate change
signal. The years 6-9 are analyzed for an assessment of the lead-time dependence of skill by
comparison to years 2-5. In this work, an assessment of lead years 2-6 is only included for global
mean predictive skill, together with additional lead-time selections of 1- and 4-year means (see
Chapter 5.2, Figure 5.12) which is also recommended by Pohlmann et al. [2013].
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2.2 The Earth System Model Validation Tool (ESMVal-
Tool)

The Earth System Model Validation Tool (ESMValTool) is a diagnostic and performance
metrics tool that facilitates the complex evaluation of ESMs (Righi et al. [2014], http:

//www.pa.op.dlr.de/ESMValTool/). It enables a routine benchmarking and evaluation of
single or multiple models. It is designed as a community developed tool to which multiple de-
velopers from different institutions contribute. Embedded in a subversion-controlled repository,
the implementation of extensions and additional analysis is straightforward.

The ESMValTool is an open source software package and as such only requires open source
content from third parties. Its core routines are developed in Python, whereas diagnostic and
plot routines are implemented in different languages like NCL, R, or matlab.

Figure 2.6: Schematic illustration of the ESMValTool structure with core scripts of the python
interface (blue), namelists (yellow), libraries (purple), diagnostic scripts (red) and input/output
files (grey).

Figure 2.6 gives a schematic overview of the ESMValTool structure. The tool is launched by
calling the main python routine with a namelist file (top left corner). The namelist, along with
general parameters controlling different aspects of the tool, contains lists of the following files:
the model and observation data used for this assessment, diagnostic scripts that are to be
called and configuration files that contain further specifications required for the diagnostics.
The main.py then calls the other interface scripts (center column). First, the input data is
reformatted to be compliant to the CMOR (Climate Model Output Rewriter) standard. Then,
a climatology for each entry in the namelist is calculated. The launcher passes these to the

19



diagnostic script(s), where the major processing of the input data takes place. The diagnostic
script then calls the plot function that produces the results as NetCDF output and/or a graph-
ics file (e.g., ps, eps, png) and writes out a log file containing the references to the applied
diagnostic and the tool.

Although the development phase has not yet been concluded, multiple diagnostics of different
kinds are already available within the ESMValTool.

The verification framework presented in this thesis has been implemented into the ESMValTool
(see Chapter 4) with the goal to make it reusable for other scientist and to run it routinely
on CMIP6 decadal simulations. This effort was done in parallel to the development of the
MiKlip Central Evaluation System’s plugin ”MurCSS”. The MurCSS-Tool also implemented
the Goddard et al. [2013] verification framework. However, in order to perform this thesis, a
more flexible use of the verification system was needed. The implementation of the verification
system into the ESMValTool has been done as part of this thesis to be able to apply it to
other variables and phenomena in a flexible manner. This is especially important for sea-ice
analyses that are performed exclusively for the month of minimal sea-ice extent. With the
MurCSS-Tool, only annual means can be assessed.
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Chapter 3

Models, Model Simulations and
Observations for Verification

3.1 MPI-ESM-LR

The MiKlip (Mittelfristige Klimaprognosen) project funded by the Federal Ministry of Edu-
cation and Research in Germany (BMBF) is aimed at providing climate predictions of the
upcoming years to decades. Its Central Prediction System evaluated in this thesis is based on
the Max Planck Institute Earth System Model (MPI-ESM). Section 3.1.1 gives a brief overview
of the model. In Section 3.1.2 the three decadal prediction systems, and in Section 3.1.3 the
long-term model simulations are described. All model systems and simulations that are outlined
here are assessed in this thesis.

3.1.1 Brief Model Description

The MPI-ESM is the successor of the ECHAM5/MPIOM coupled climate model. As an Earth
system model (ESM), it includes processes of the atmosphere, the land and the ocean that are
simulated by different model components. An overview of these modules is given in Figure 3.1
[Giorgetta et al., 2013]. The general circulation model European Center-Hamburg Atmosphere
Model version 6 (ECHAM6, [Stevens and Boucher, 2012]) forms the dynamical atmospheric
core of the MPI-ESM, while the Max Planck Institute Ocean Model (MPIOM, [Jungclaus
et al., 2013]) simulates the ocean. Both modules are coupled through an interface to the Jena
Scheme for Biosphere Atmosphere Coupling in Hamburg (JSBACH, [Rieck et al., 2012]) and
the Hamburg Ocean Carbon Cycle Model (HAMOCC, [Ilyina et al., 2012]), respectively.

The coupling is performed by the Ocean Atmosphere Sea Ice Soil (OASIS, [Valcke, 2013]). It
enables the daily aggregation, interpolation and exchange of fluxes and state variables between
the atmosphere (ECHAM6) and land surface (JSBACH), and between the ocean (MPIOM)
and the marine biogeochemistry (HAMOCC). The exchanged variables and fluxes include en-
ergy, momentum, water and carbon dioxide (CO2).
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Figure 3.1: Schematic illustration of the MPI-ESM model components ECHAM6, JSBACH,
MPIOM, HAMOCC and OASIS. Arrows indicate the exchange of energy and momentum (or-
ange), CO2 (brown) and water (blue) between the model components. Figure from [Giorgetta
et al., 2013].

Among the most important improvements of the MPI-ESM towards its predecessor ECHAM5/
MPIOM are an advanced treatment of radiative transfer, a better representation of the sur-
face albedo, a better represented middle atmosphere and the inclusion of a coupled carbon
cycle [http://www.mpimet.mpg.de/en/science/models/mpi-esm.html]. The latter en-
ables the capture of carbon cycle feedbacks and, together with the biogeochemical module,
forms the ESM component of the MPI-ESM.

For CMIP5, the MPI-ESM has been implemented with three different model configurations
that differ in the components’ spatial resolutions (MPI-ESM-LR/-MR) or setups of vegeta-
tion and orbit (MPI-ESM-P) [Giorgetta et al., 2013]. In this thesis, the low-resolution version
MPI-ESM-LR is being evaluated. It is the most widely used configuration and has the most
realizations and start dates for decadal predictions. The simulated atmosphere of the MPI-
ESM-LR has a horizontal resolution of 1.9◦ and 47 vertical pressure levels extending to 0.1
hPa. The ocean is configured with 40 z-levels and a horizontal resolution of 1.5◦ (near equator)
on a bipolar grid with poles at Greenland and the coast of the Weddell Sea.

3.1.2 Overview of the three available MiKlip decadal prediction sys-
tems and their simulations

Three different MiKlip decadal prediction systems exist from the MPI-ESM-LR: baseline-0
(b0-LR), baseline-1 (b1-LR) and prototype (pr).

As already discussed in Chapter 2.1.1, decadal climate simulations are initialized with observa-
tional data for the slow-varying components of the Earth system. Hereby, two main different
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initialization techniques exist: full field and anomaly initialization. For details about initializa-
tion methods and general experimental setups of decadal predictions, please see Chapter 2.1.
The three prediction systems mainly differ in their employed initialization technique and the
ensemble size [Müller et al., 2014].

In the b0-LR prediction system, only the ocean temperature and salinity fields are initialized
using the anomaly initialization method on the MPIOM with data from the National Centers
for Environmental Prediction (NCEP). The b0-LR decadal predictions experiments are initial-
ized every year from 1961 to 2012, each with three ensemble members integrating for ten
years. Every 5 years, an additional set of 7 ensemble members is initialized, three of which are
prolonged to 30 years.

The ocean in the b1-LR simulations is also initialized with the anomaly technique, but with
ocean reanalysis data from the ocean reanalysis system 4 (ORAS4) from ECMWF [Balmaseda
et al., 2013]. In addition, in b1-LR some atmospheric parameters (vorticity, divergence, tem-
perature and air pressure) are initialized from the European Reanalysis data (ERA) [Dee et al.,
2011], utilizing the full field technique. The yearly-initialized ensembles each consist of 10
members.

The prototype prediction system uses the same initialization of the atmosphere as b1-LR, but
the ocean is initialized applying the full field method with data of temperature and salinity
fields taken from ORA-S4 as well, and also from GECCO2 (German contribution to Estimat-
ing the Circulation and Climate of the Ocean) [Köhl, 2014]. For each of the yearly-initialized
experiments, there are 15 ensemble members for ORA-S4-initialized simulations and an addi-
tional 15 members for those initialized with GECCO2. The start dates of both b1-LR and pr
cover the time period 1961 to 2013.

For all assessments in this thesis, only the first ten years after initialization of the first three
ensemble members (pr: only ORA-S4-initialized ensemble) of every decadal experiment were
used.

3.1.3 Overview of the MPI-ESM long-term simulations

A number of long-term experiments have been performed with the MPI-ESM following the
CMIP5 experiment protocol [Taylor et al., 2012]. In this thesis, the output of the so-called
historical experiment is compared to the results from the decadal hindcast simulations to study
whether the initialization improves predictive skill compared to the long-term simulations.
The long-term uninitialized historical simulation starts in 1850 and goes until 2005 driven
with prescribed natural and anthropogenic forcings [Giorgetta et al., 2013]. The historical
simulations include the three ensemble members r1, r2, and r3 that start at the end of the years
1880, 1900 and 1920, respectively, from preindustrial control simulations that have constant
forcing.
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3.2 Observations

The verification framework applied in this thesis, uses observational data for the evaluation of
model performance. For each of the two variables assessed in this work (near surface tempera-
ture and sea-ice concentrations), one observational dataset was selected. A brief description of
the data is given in this section. Follow-up studies could additionally assess how observational
uncertainty influences the results by using alternative datasets.

3.2.1 Temperature Observations

For near-surface air temperature, the observations provided by the HadCRUT3v temperature
anomaly dataset are used, covering the time period 1850-2010 [http://www.cru.uea.ac.
uk/cru/data/temperature/]. For land regions, monthly mean surface temperatures are de-
rived from over 4800 stations (for recent years) all over the globe with varying density of
stations depending on the population of the area [Jones et al., 2014]. For the ocean, sea-
surface temperature is derived from merchant and naval vessels and (since the 1980s) from
fixed and drifting buoys [Kennedy et al., 2011].

The data consist of monthly means on spatial resolution of 5◦ times 5◦ latitude/longitude
grid boxes. They are provided as temperature anomalies with respect to the reference period
1961-1990 (period with best coverage). The reason for providing anomalies lies in the different
elevations of land stations and the differing methods used for measuring the monthly average
temperature. To account for biases due to this problem, every station has its own climatolog-
ical average of 1961 to 1990 subtracted from each monthly mean. When this period is not
completely covered by one station, neighboring stations or other sources of data have been
used for compensation [Jones et al., 2014].

Because of different availability in space and time of data for each grid box, the gridded
anomalies are calculated over a different numbers of monthly means. This has an impact on
the variance of each grid box: averages calculated from fewer observations have a greater
variance than those made from many. Thus, a variance adjustment of the data was made
(indicated by an appended ”v” in the name of the dataset, i.e. HadCRUT3v). The adjustment
contains a re-processing of the anomalies with a statistical homogenization of the variances
[http://icdc.zmaw.de/crutem_and_hadcrut.html].

3.2.2 Sea-Ice Observations

For the sea-ice evaluation made in this thesis, the Hadley Center’s sea ice and sea surface tem-
perature (HadISST) dataset is used [http://www.metoffice.gov.uk/hadobs/hadisst/].
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The sea-ice data are derived from different sources including shipping, expeditions, digitized
sea-ice charts, operational ice analysis from NCEP and passive microwave retrievals (mainly
from the NASA). It is the longest available sea-ice dataset for both Arctic and Antarctic,
ranging from 1871 to present. For the time before satellite measurements were available, the
sea-ice data is predicted by thresholds of sea-surface temperature records obtained by ships
and buoys [Rayner et al., 2003]. Like the surface temperature datasets in the previous section,
the sea-ice data are monthly means, but the spatial resolution is larger (1◦ x 1◦).

The combination of many data sources poses both the best strength and greatest weakness of
the dataset. Long time ranges can be ensured by including different sources and thereby not be-
ing restricted to satellite information, but the continuity of the time series is difficult to assess,
leading to breaks in the record that are of no climatic origin. [https://climatedataguide.
ucar.edu/climate-data/sea-ice-concentration-data-hadisst].
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Chapter 4

Verification Framework

4.1 Preprocessing

For the evaluation of decadal climate model output, a number of preprocessing steps are re-
quired, which are described in this section. The climate model data evaluated in this Thesis
consist of uninitialized longterm simulations and initialized decadal simulations each covering
a time period of ten years. Every decadal hindcast experiment contains a number of ensemble
members that differ only in their initial conditions. Differences in the initialization method (“full
field” or “anomaly” initialization) do not affect the calculations described below [ICPO, 2013].

The comparisons are made by testing the model systems against each other and against obser-
vations. For near-surface air temperature (tas), the HadCRUT3v dataset is used for the verifi-
cation (http://www.cru.uea.ac.uk/cru/data/temperature/). This is the same dataset
that was applied by Goddard et al. [2013]. It provides temperature anomalies with respect to
the reference period 1958-2001. Note that both model and observational data are monthly
means.

4.1.1 Ensemble Average

The first step is the calculation of ensemble averages. For each decadal experiment ensemble,
the average D over all ensemble members Ei is computed. The resulting array is a function
of start time τ , time t, latitude φ and longitude ψ:

D(τ, t, φ, ψ) =
1

N

N∑
i

Ei(τ, t, φ, ψ), (4.1)

where i = 1, ..., N indicates the ensemble member. The start time τ is the first year of
each experiment after its initialization. Thus, it also identifies the decadal experiment, as
each of them starts at a specific point in time. For the uninitialized longterm simulations,
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the ensemble average is only a function of time, latitude and longitude, as there is only one
longterm ensemble.

4.1.2 Cross-Validation and Anomaly Calculation

The next step is the cross-validated anomaly calculation of the decadal ensemble means,
which is applied in order to remove the mean bias from the data, following the suggestions
given by the World Climate Research Programme Report [ICPO, 2013]. The cross-validation is
calculated on a lead-month level by subtracting from every lead month tl (with l = 1, ..., 120)
of a given hindcast experiment Dτj (j = 1, ...,M) the climatological mean of the same lead
months from all other experiments τk (k = 1, ...,M):

Dcv(τj, tl, φ, ψ) = D(τj, tl, φ, ψ)− 1

M − 1

∑
k 6=j

D(τk, tl, φ, ψ). (4.2)

Consider, for example, a set of 20 decadal hindcast experiments with yearly initialization, with
starting year between 1960 and 1979 (Figure 4.1). The cross-validation is applied to month 1
(first occuring January) of the experiment starting in 1960 by subtracting the average of all
other months 1 (196101 from the experiment starting in 1961, 196201 from the experiment
starting in 1962 and so on until 197901 from the 1979 experiment). The same is done to month
1 of experiment 1961, from which the average consisting of months 1 from the experiments
1960 and 1962-1979 is subtracted, and so on until 197901 from experiment 1979 that has the
average of months 1 of experiments 1960-1978 removed. This procedure is then applied to all
other lead months of all experiments, until the final December (lead month 120) of the last
experiment (198812 of 1979). In this way, a different average is subtracted from every month
in every decadal ensemble mean.

The longterm simulations L and observations O are handled differently in this step. From
every time step tj, the climatological average of the complete time range is subtracted:

Lcv(tj, φ, ψ) = L(tj, φ, ψ)− 1

N

N∑
j

L(tj, φ, ψ) (4.3)

and

Ocv(tj, φ, ψ) = O(tj, φ, ψ)− 1

N

N∑
j

O(tj, φ, ψ). (4.4)

Now, decadal, longterm and observational data can be regarded as anomalies. The anomaly-
calculation, performed in a cross-validated manner for decadal hindcast data, is equivalent to
the removal of mean bias [Goddard et al., 2013].
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Figure 4.1: Example table of a set of 20 decadal hindcast experiments with yearly initialization,
with starting year between 1960 and 1979. Green colors indicate the lead months of each
experiment defined by its respective start year (vertical coordinate), whereby the first occuring
January (month 1) of each experiment is highlighted in dark green. The abscissa shows the
time coordinate of the data, as year-month.

4.1.3 Lead-time Selection

As discussed in Chapter 2.1, different time ranges of the decadal experiments are considered
for the evaluation of the prediction skill. The selected lead years y1 to y2 are averaged out for
each decadal (cross-validated) hindcast experiment Dcv. This average is then stored in another
array Dlt(τ, φ, ψ) at the position of the start time τj of that particular hindcast:

Dlt(τj, φ, ψ) =
1

y2 − y1 + 1

y2∑
m=y1

Dcv(τj, tm, φ, ψ) (4.5)

This procedure is depicted in Figure 4.2. Dark green indicates the lead time selection of years
2-5. For every hindcast experiment defined by its start time (1960,1961,...,1979), the dark
green fields are averaged and stored at the start time of the respective experiment. For exam-
ple, the value stored at the position τ = 1960 is the average of all months of the years 1961 to
1965 (i.e., month 13 to 60) of the decadal experiment started in 1960. The value at τ = 1961
is the average of 1962-1966 of the experiment starting in 1961, and so on until τ = 1979 with
the average of 1980-1984 of experiment 1979.

The array Lcv (Ocv) containing the longterm simulation (observation) anomalies is sampled
accordingly, so that its value at a given τj is the average of the same respective years in Lcv
(Ocv) as the one at Dcv(τj):

Llt(τj, φ, ψ) =
1

y2 − y1 + 1

y2∑
m=y1

Lcv(tm, φ, ψ) (4.6)

and
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Figure 4.2: Example table of 20 decadal hindcast experiments with yearly initialization, with
starting year between 1960 and 1979. Green colors indicate the location of the lead years of
each experiment (vertical coordinate) in time (abscissa). Dark green shading denotes the lead
time selection of years 2-5 in every experiment. The bottom row depicts the array Dlt, with
orange arrows indicating the position τ the lead time averages of each experiment are stored
to.

Olt(τj, φ, ψ) =
1

y2 − y1 + 1

y2∑
m=y1

Ocv(tm, φ, ψ). (4.7)

The equal treatment of the data ensures a consistent comparison of each decadal hindcast
against the corresponding time range of observations and longterm simulations. Note that
for long enough lead time ranges and frequent enough initializations (just like in the example
shown in Figure 4.2), the lead time selections may overlap, so that some years of longterm
and observational data may be included in more than one lead time average.

4.1.4 Regridding

The arrays Dlt(τ, φ, ψ), Llt(τ, φ, ψ) and Olt(τ, φ, ψ) are tested against each other for every
latitude φ and longitude ψ. As the metric calculations are at the grid-point level, which result
in a two-dimensional field (latitude, longitude), the model and observational data have to
be regridded to the same spatial resolution. The position of the remapping procedure within
the preprocessing steps is somewhat arbitrary, but in order not to lose any information from
interpolating to a coarser grid before performing the cross-validation and because remapping
is quite expensive in terms of computing time (especially for data on irregular grids), it is
desirable to perform this operation at the end of the preprocessing when many time steps and
ensemble members were averaged out.

Following the example of Goddard et al. [2013], the grid of the observations is used as target
grid for the remapping of the model data. The ESMValTool uses bilinear interpolation for
remapping a regular rectilinear grid to another (https://www.ncl.ucar.edu/Document/
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Functions/Built-in/linint2.shtml). Other regridding methods (like area conservation)
were tested, leading to the same results (not shown).

4.1.5 Statistical Significance Test

To evaluate the statistical significance of scores and of differences between scores, a non-
parametric block-bootstrap algorithm [Wilks, 2011; Goddard et al., 2013; Eade et al., 2014]
has been implemented in the ESMValTool. Hereby, the original data is being resampled in
the following way: a number of hindcasts is randomly drawn with repitition from the pool
of the ensemble averages until the exact same experiment size as before has been reached.
This resampled experiment is very likely to be different from the original one, as some of
the hindcasts may be included multiple times. To account for temporal auto-correlation, the
resampling is done for blocks of 2-5 consecutive hindcasts, the number of which depending on
the experiment size and the initialization frequency.

The verification metrics are then calculated for this newly generated experiment, including the
preprocessing steps from above. This process is repeated a given number of times (500 for
this thesis). In this way, a distribution function of the metrics is obtained for each grid cell and
used for the significance test. The p value for the test is represented by the fraction of values
that have a different sign than the original value. If p is smaller than or equal to the selected
significance level α (5% in this thesis), the score of this grid cell is considered significant for
the (1−α) ∗ 100% confidence level. In other words, if for a given grid cell at least 95% of the
resampled values have the same sign as the original value, the latter is considered significant.

4.2 Metrics

For the verification system, a number of deterministic metrics were chosen to evaluate the
quality of prediction experiments. More specifically, they help to iterate the question whether
the initialization of climate models leads to a more accurate prediction of the climate. The
metric calculations are performed at the grid-cell level, therefore in the following equations the
dependence on the spatial coordinates is omitted for simplicity.
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4.2.1 Mean Squared Skill Score

The mean squared skill score (MSSS) measures the accuracy of a test prediction against a
reference prediction, such as, for example, uninitialized simulations, or observations. The MSSS
is defined via the mean squared error (MSE) between the predictions or hindcasts Hj and the
observations Oj Goddard et al. [2013]:

MSE =
1

n

n∑
j=1

(Hj −Oj)
2, (4.8)

where the index j = 1, ..., n represents the time steps of the data. The MSE here includes
only the error variance, not the bias error component, since Hj and Oj are given as anomalies
for which the mean bias has been removed (see Section 4.1.2).

The MSSS of a test prediction H against the climatological mean of the observations (Ō =

1
n

n∑
j=1

Oj) is then defined as the MSE of H over the one of Ō, subtracted from 1:

MSSS(H, Ō, O) = 1− MSEH
MSEŌ

, (4.9)

making the MSSS a function of the test prediction, the reference, and the observations. The
MSSS can be also defined using the uninitialized predictions (P) instead of the observations
as reference:

MSSS(H,P,O) = 1− MSEH
MSEP

. (4.10)

A perfect MSSS has the value 1, corresponding to a the mean squared error of the test
predictions of value 0. Accordingly, a positive (negative) MSSS indicates an improvement
(worsening) in the accuracy of the test predictions over the reference predictions. Note that
the MSSS is not symmetric about zero, so a positive MSSS does not imply the same increase
in accuracy as the same absolute value of a negative MSSS would imply its decrease.

4.2.2 Anomaly Correlation Coefficient

The MSSS is decomposed with the Murphy-Epstein decomposition to interpret its compo-
nents: the anomaly correlation coefficient and the conditional bias [Murphy, 1988].

Applying the decomposition to the MSSS for the hindcasts H against the observation clima-
tology Ō results in

MSSS(H, Ō, O) = r2
HO −

[
rHO −

σH
σO

]2

, (4.11)

where rHO is the correlation coefficient between the hindcasts and the observations, and σH
and σO are the standard deviations of the hindcasts and the observations, respectively:
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σH =

√√√√ 1

n

n∑
j=1

(Hj − H̄)2 σO =

√√√√ 1

n

n∑
j=1

(Oj − Ō)2 (4.12)

The first term of equation 4.11 is the square of the anomaly correlation coefficient that will
be further discussed here, whereas the square root of the second term, the conditional bias, is
subject of the next section.

The correlation coefficient rxy measures the linear relationship between two datasets x and
y. It is a dimensionless quantity ranging between -1 and 1. The correlation coefficient is used
in this thesis to evaluate the potential skill of model simulations [Goddard et al., 2013]. Also
known as Pearson product-moment correlation coefficient, this metric is defined as [Wilks,
2011]:

rxy =
1

n− 1

n∑
j=1

(xj − x̄)(yj − ȳ)

σxσy
, (4.13)

with x̄ (ȳ) being the mean of xj (yj):

x̄ =
1

n

n∑
j=1

xj. (4.14)

In this thesis, x represents the model data to be tested and y the observations. For the test of
decadal hindcast simulations H against a reference model R, the difference between the two
correlation coefficients (rHO − rRO) is calculated as an estimate for the gain in correlation of
H over R.

4.2.3 Conditional Bias

The second term of equation 4.11 is the square of the conditional bias cb representing the
reliability of the hindcast/reference prediction and the observations:

cbHO = rHO −
sH
sO

(4.15)

To evaluate a possible reduction in conditional bias from the hindcasts H compared to the
reference predictions R, the absolute values of the conditional biases of both predictions are
subtracted from each other (|cbHO| − |cbRO|).

For a better understanding of the difference between the conditional and the mean bias, two
simplified examples are illustrated in Figure 4.3 [Goddard et al., 2013]. In both panels, a linear
temperature trend is considered for the observations (black line). The hindcast data (green
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Figure 4.3: Illustration of the difference between mean and conditional bias of hindcasts
(green lines) and observations (black). Vertical grey lines along the abscissa represent the
start times of decadal hindcast experiments. Figure from Goddard et al. [2013].

line) capture the trend perfectly in the left picture, but have a positive mean bias due to the
constant offset. In the right example, the model data have a stronger trend and a zero mean
bias. The correlation coefficient is 1 in both cases. The conditional bias, on the other hand,
is zero in the left case, because here, the variances of the model and observation data are
identical ( sH

sO
= 1), but negative in the right one, where the variance of the hindcast data is

larger than the one of the observations ( sH
sO
> 1).

In contrast to the correlation coefficient, the conditional bias depends on the relative magni-
tude, or expected value, of a time series. Both measures are important for an evaluation of
the relative accuracy of climate predictions and will therefore be considered in this thesis.
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Chapter 5

Results

5.1 Comparison of the ESMValTool Verification System
to Previous Studies

Goddard et al. [2013] developed and applied a verification framework that enables an assess-
ment of the information content in initialized decadal hindcast experiments compared to other
initialized or uninitialized simulations and to observations. Pohlmann et al. [2013] applied one
of these verification metrics, the anomaly correlation, to near-surface air temperature data
from the MPI-ESM model, a model that participated in CMIP5. They assessed the hindcast
skill of different initialized MiKlip decadal prediction systems against each other and against
the HadCrut3v observational dataset.

In this thesis, the verification system from Goddard et al. [2013] has been implemented into
the ESMValTool (see Chapter 2). To test the newly developed code, Section 5.1.1 compares
the results of the verification system of the ESMValTool to those published by Pohlmann et al.
[2013] using the exact same input data to ensure reproducibility of the implemented metrics.
Possible methodological discrepancies that could occur for example through a different ensem-
ble mean calculation, regridding etc. are identified. In Section 5.1.2, results of the additional
metrics (mean squared skill score (MSSS) and conditional bias) implemented in the ESMVal-
Tool are further compared to those obtained by the MurCSS-Tool, a tool that implemented
the Goddard et al. [2013] verification system as well, and that was used by Pohlmann et al.
[2013] to calculate the anomaly correlations.

5.1.1 Comparison of the Correlation Metric to Pohlmann et al. 2013

The anomaly correlation is calculated to measure the linear relationship between the hindcasts
and the observations. Figure 5.1 shows a comparison of the ensemble mean anomaly correla-
tion for two different MPI-ESM-LR decadal prediction systems (b0-LR and b1-LR) calculated
against HadCRUT3v observations as published by Pohlmann et al. [2013] (left) and as calcu-
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Figure 5.1: Maps of ensemble mean hindcast skill (anomaly correlation) of near-surface air
temperature from two different versions of the decadal prediction system of the MPI-ESM-LR
model against observations from HadCRUT3v, as calculated by Pohlmann et al. [2013] (left
column) and by the ESMValTool (right column). Initialized simulations from b0-LR (top row)
and b1-LR (middle row) against observations and the difference of the anomaly correlation
skill between the two model versions (bottom row) is shown. In both systems, lead year 1 of
decadal experiments initialized every year from 1960 to 2002 was used. Crosses denote skill or
differences in skill exceeding the 5-95% confidence level.

lated with the ESMValTool (right). From the 43 hindcasts included in this assessment, only the
first year after the initialization of each of them is used (i.e., lead year 1). Red colors indicate a
positive correlation, i.e. high predictive skill, whereas blue denotes negative predictive skill. As
already noted by Pohlmann et al. [2013], lead year 1 has a positive anomaly correlation skill
for almost all parts of the globe (top and middle panel of left column). This reflects that the
observed warming trend between 1961 and 2012 is well represented in the first prediction year
in both prediction systems. The predictive skill from b0-LR to b1-LR is significantly improved
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Figure 5.2: Same as Figure 5.1, but for lead years 2-5.

over the North Atlantic, the Southern Ocean and the tropical and North Pacific. Only over
the South American continent and in the Pacific Ocean west of Japan, b0-LR has a higher
correlation skill than b1-LR.

These results are very well reproduced by the ESMValTool (right column). For all three pan-
els, not only patterns match, but also absolute values, with the exception of slightly increased
noise. Similarly, grid cells containing values that are statistically significant on the 5-95% con-
fidence level (denoted by crosses) are in very good agreement to the ones found by Pohlmann
et al. [2013]. Deviations in statistically significant values, which are especially visible in the
difference plot in the bottom row, could be explained by a higher number of bootstrap resam-
plings calculated here with the ESMValTool.

A similar comparison, but for lead years 2-5, is shown in Figure 5.2. In the b0-LR system (top
left panel), negative correlation skill emerges in the tropical and North-East Pacific regions.
This is due to a reversed warming trend in the hindcasts of these regions in b0-LR, with warmer
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years in the 1990s and 2000s and cooler years in the 1960s and 1970s relative to observations
[Pohlmann et al., 2013]. The negative correlation in the tropics is significantly improved in
b1-LR (bottom left panel), with positive and significant correlation almost everywhere except
the East Pacific region (middle left panel). A sensitivity study found that the skill improve-
ments stem from the different oceanic initializations between the b0-LR and the b1-LR system
[Pohlmann et al., 2013] (see also Chapter 3.1).

Again, the ESMValTool is capable of reproducing the aforementioned results (right column).
Slight differences occur in b1-LR versus observations (middle row) over the Pacific Ocean,
where the ESMValTool underestimates absolute values of both positive and negative correla-
tion.

5.1.2 Comparison of the Verification System to the MurCSS-Tool

The results from Pohlmann et al. [2013], that served for the comparison of the anomaly
correlation metric in the previous section, were calculated with the MiKlip Central Evalua-
tion System’s plugin ”MurCSS” (see https://www-miklip.dkrz.de/about/murcss/). The
MurCSS-Tool is another system for the analysis of decadal predictions that has implemented
the metrics from Goddard et al. [2013] as well. This development was done in parallel to the
implementation of the verification system into the ESMValTool. More importantly, the imple-
mentation of the verification system into the ESMValTool was done as part of this thesis to
be able to apply it to other variables and phenomena in a flexible manner. This is especially
important for sea-ice analyses that are performed exclusively for months of minimal sea-ice
extent. With the MurCSS-Tool, only annual means can be assessed.

Similar to Section 5.1.1, the results for additional metrics (conditional bias and MSSS) included
in both the MurCSS and the ESMValTool are now compared to each other, again using the
exact same simulations from the MPI-ESM-LR and the same observations. In contrast to the
previous section, lead years 2-9 are chosen, as well as a slightly shorter time period, since the
MPI-ESM-LR historical simulations are only available until 2005. In contrast to Section 5.1.1,
here the focus is on comparing the predictive skill of initialized decadal hindcasts to the unini-
tialized simulations.

Figure 5.3 shows the anomaly correlation of near-surface temperature for the MPI-ESM-LR
against the HadCRUT3v observations that were also used in Figures 5.1 and 5.2. Compared
to the uninitialized simulations, increased skill in the initialized simulations can be seen over
large parts of the Northern Atlantic and southwest of South America (Figure 5.3, red areas in
lower panels), whereas in other regions there is no additional or even less predictive skill (blue
grid cells).

Very good agreement between the results calculated with the MurCSS-Tool and the ESMVal-
Tool is found, indicating that the findings of the previous section also hold for different lead
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Figure 5.3: Ensemble mean hindcast skill (anomaly correlation) of near-surface air tempera-
ture from b1-LR against observations from HadCRUT3v calculated by the MurCSS-Tool (left)
and by the ESMValTool (right). From top to bottom: initialized simulations against obser-
vation, uninitialized simulation against observation, and difference between the two anomaly
correlations. In both systems, the selected lead time is years 2-9 of decadal experiments ini-
tialized every year from 1960 to 1995. Crosses in the ESMValTool’s results denote skill or
differences in skill exceeding the 5-95% confidence level.

year selections and the inclusion of long-term simulations. Apart from some additional noise
in the anomaly correlation produced with the ESMValTool, not only the geographical pattern
is very similar, but also the absolute values over much of the globe.
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Figure 5.4: Same as Figure 5.3, but for the conditional bias calculated from the b1-LR
(upper row) and the long-term (middle row) simulations against observation from HadCRUT3v
calculated by the MurCSS-Tool (left) and the ESMValTool (right). The difference in the
conditional bias between the initialized and the uninitialized simulation is calculated from the
original values of the individual conditional biases in the MurCSS-Tool (lower left panel) and
from the absolute values in the ESMValTool (lower right panel) which explains why the colors
are reverse.

Areas of improvement in correlation skill re-appear in the conditional bias and the MSSS (Fig-
ures 5.4 and 5.5). In the North Atlantic as well as in the south-west of South America, the
conditional bias is reduced (Figure 5.4, blue areas in lower right panel) and the MSSS increases
(Figure 5.4, red areas in lower right panel) from long-term to b1-LR, implying a higher relia-
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Figure 5.5: Same as Figure 5.3, but for mean squared skill score (MSSS) calculated from
the b1-LR (upper row) and the long-term (middle row) simulations against observation from
HadCRUT3v calculated by the MurCSS-Tool (left) and the ESMValTool (right). In the bot-
tom row, not the difference between the decadal and long-term simulations is shown (as for
correlation skill and conditional bias), but the MSSS calculated from the decadal hindcasts
versus the long-term simulations.

bility and better accuracy in these regions in the decadal prediction system compared to the
long-term simulations.

Similar good agreement as for the anomaly correlation metric is found for the conditional bias
and the MSSS between the two verification systems MurCSS and ESMValTool. Note that in
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contrast to the definition of Goddard et al. [2013] that uses the absolute difference, the differ-
ence in the conditional bias between the initialized and uninitialized simulations in Figure 5.4
is calculated by MurCSS (lower left panel) with respect to the original values instead of the
absolute values. This explains the differences in sign compared to the results of the conditional
bias as calculated by the ESMValTool (lower right panel) that follows the original Goddard
et al. [2013] definition.

5.1.3 Summary of Comparisons

Overall excellent agreement both qualitatively and quantitatively is found between the ESMVal-
Tool and the MurCSS-Tool results that were used in Pohlmann et al. [2013] to calculate the
anomaly correlations. This confirms that the implementation into the ESMValTool that was
done as part of this thesis provides accurate results and can be used for further analyses
in subsequent sections of this thesis and in follow-up studies. Slightly increased noise in the
ESMValTool could be due to additional smoothing in the results shown in Pohlmann et al.
[2013] that is beyond the spatial smoothing that stems from the regridding, like in Goddard
et al. [2013] (their Figure 9).

Differences between the two systems are found in the pattern of missing values which does not
match perfectly. This is due to a missing specification in Pohlmann et al. [2013] about how
missing values were exactly treated. As missing values stem from gaps in the observational
dataset, differences in the pattern of missing values between the two systems may be related to
a different treatment of missing time steps in the data. When performing temporal averages,
Pohlmann et al. [2013] seem to have used a certain threshold representing the number of
missing time steps after which the calculated mean returns a missing value as a result. A com-
parison by eye shows that similar results for missing values are achieved in the ESMValTool if a
threshold of 60% is used, i.e. the numerical functions computing averages return a non-missing
value only if at least 60% of the observational data in the constructed time series are available.

5.2 Forecast Skill of Ensemble Mean Surface Tempera-
ture in MiKlip Decadal Predictions

In this section, the verification system implemented into the ESMValTool is applied to near-
surface air temperature data as simulated by different versions of the MiKlip decadal prediction
systems. The goal of Section 5.2.1 is to determine which of the three MiKlip decadal predictions
systems (b0-LR, b1-LR and pr, see Chapter 3.1.2) performs best in terms of its predictive skill.
The results extend the previous comparisons to the MurCSS-Tool in this regard that the newly
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available MiKlip prototype system (pr) is included, that was not yet assessed in Pohlmann
et al. [2013]. After deciding on the best performing MiKlip system out of the three available
systems, in Section 5.2.2 this selected prediction system is then compared to the uninitialized
long-term simulations of the MPI-ESM-LR to assess whether the initialization of the model
leads to a better performance and more skillful predictions than those obtained with the unini-
tialized long-term model simulations. For all assessments, only grid cells containing statistically
significant values are considered.

5.2.1 Comparison of Different Versions of the MiKlip Decadal Pre-
diction Systems

In order to be consistent with the approach of Section 5.1.1 and Pohlmann et al. [2013],
lead years 2-5 are chosen for the assessments in this section. For this lead time, the anomaly
correlation skill (Figure 5.6) in b0-LR is positive over most of the mid-latitudes in both hemi-
spheres, but negative correlation skill appears in the tropics and eastern North Pacific with
largest magnitudes over the tropical East Pacific (see also Pohlmann et al. [2013]).

An increase in hindcast skill from b0-LR (top left) to b1-LR (middle left) is evident in the
difference plot (upper plot in right column), especially in the tropical Atlantic and Indian
Ocean, where the correlation becomes positive in b1-LR. Although negative correlation skill is
still evident in the Pacific Ocean in b1-LR, the skill has substantially increased compared to
b0-LR, especially in the tropical region. In contrast to these improvements, the hindcast skill
over North Atlantic Ocean decreases from b0-LR to b1-LR.

With both ocean and atmosphere initialized with the full field method in the pr version (Fig-
ure 5.6, bottom left), overall very similar results are found compared to b1-LR, although the
correlation skill further increases in the eastern tropical Pacific Ocean and even more strongly
in the North Atlantic Ocean (lower right panel).

The conditional bias is used to assess the reliability of the hindcasts (Figure 5.7). Consistent
with the regions where the correlation skill was negative, the conditional bias of b0-LR is most
strongly negative over the tropical Pacific Ocean and generally negative over most of the globe.
From b0-LR to b1-LR, the absolute value of the conditional bias decreases (see also upper
right panel in Figure 5.7). The largest improvements are found in the tropical Pacific and
Indian Oceans, where the correlation increases as well. b1-LR and pr are overall very similar,
with regions where the conditional bias is reduced (East Pacific Ocean and Australia) and
where it gets larger (North Atlantic Ocean). Despite a further improvement in these regions in
pr (lower right), an increase in conditional bias in the West Pacific and North Atlantic is found.

The MSSS is a combination of the anomaly correlation and the conditional bias and is used
to assess the accuracy of the hindcasts (Figure 5.8). If the MSSS is positive (red colors),
there is high accuracy, whereas negative values denote low accuracy. Very low accuracy is
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Figure 5.6: Maps of ensemble mean hindcast skill (anomaly correlation) of near-surface air
temperature from the three different decadal prediction systems of the MPI-ESM-LR model
against observations from HadCRUT3v as calculated with the ESMValTool. In the left column,
initialized simulations from b0-LR (top), b1-LR (middle) and pr (bottom) against observations
are shown. The right column depicts the difference of the anomaly correlation skill between
baseline-1 and -0 (upper panel) and prototype towards b1-LR (lower panel). The selected lead
time is years 2-5 of decadal experiments initialized every year from 1960 to 1995. Crosses
denote skill or differences in skill exceeding the 5-95% confidence level.

found in b0-LR (top left) over the entire Pacific Ocean and the tropics, and also in the North
and West Atlantic. In b1-LR (middle left), there is low skill in the same regions, but here
of smaller magnitude. An improvement in accuracy occurs especially over the Indian Ocean,
where the MSSS becomes positive. For pr (bottom left) even higher accuracy in the Indian
Ocean is found and the magnitude of negative MSSS further decreases over the Pacific Ocean.

The right column shows the MSSS of b1-LR tested against b0-LR (top) and pr against b1-
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Figure 5.7: Same as Figure 5.6, but for the conditional bias as calculated with the ESMVal-
Tool. The right column depicts the difference of the absolute values of two respective fields in
the left column, why here, blue colors denote an improvement, i.e. increase of reliability, and
red colors denote the opposite. Also note the different ranges of value in the color scales of
the two columns.

LR (bottom). Positive values (red colors) indicate an improvement in accuracy over the test
prediction, blue denotes the opposite. The strongest increase in accuracy is from b0-LR to
b1-LR, especially in the tropics, whereas there is less accuracy in some parts of the middle
latitudes (both hemispheres, but especially in the northern one). From b1-LR to pr, a further
improvement in the East Pacific and Indian Ocean is evident, which corresponds to the findings
of the left column.

The results in this section show that for lead years 2-5, b1-LR and pr are performing substan-
tially better than b0-LR, and that the differences between b1-LR and pr are small, with one or
the other system performing slightly better or worse than the other one for a specific metric
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Figure 5.8: Same as Figure 5.6, but for MSSS as calculated with the ESMValTool. The panels
in the right column each depict the MSSS of one decadal model version against another.

or region. The prototype prediction system is the most recently developed MiKlip system,
where only a few studies are available This is why the pr system is chosen for a more detailed
comparison to the long-term simulations in Section 5.2.2.

5.2.2 Comparison of the MiKlip Decadal Prototype System to Long-
term Simulations

To examine the science question whether the initialization of the MPI-ESM improves the fore-
cast skill, the MiKlip decadal prototype prediction system is compared to the uninitialized
long-term simulations in this section.
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Figure 5.9: Ensemble mean hindcast skill (anomaly correlation) of near-surface air temper-
ature from MPI-ESM-LR-protype decadal hindcasts (top left) and -LR long-term simulations
(top right) against observations from HadCRUT3v as calculated with the ESMValTool. The
bottom figure depicts the difference between the two anomaly correlations, with the long-term
subtracted from the prototype version. Evaluated are the decadal experiments initialized ev-
ery year from 1960 to 1995 with a lead-time selection of years 2-5. Crosses denote skill or
differences in skill exceeding the 5-95% confidence level.

The anomaly correlation skill (Figure 5.9) for lead years 2-5 is mostly similar between pr (up-
per left) and long-term (upper right), which is also visible in the difference plot in the lower
row. However, two regions stand out with significant improvements in forecast skill, one over
the North Atlantic and one over the south-west of South America. In addition, the forecast
skill is slightly higher in pr also over some parts of the North Pacific Ocean, over Northwest
America, and the Mediterranean region. The strongest decrease in hindcast skill is found over
the tropical Pacific region, but in smaller magnitude than the aforementioned increase.

The conditional bias (Figure 5.10) is again mostly similar between pr and long-term (upper
row), with a negative conditional bias dominating much of the globe. The difference in the
absolute values of the respective conditional biases (bottom panel) reveals that the conditional
bias increases in magnitude by the initialization, especially in the Pacific and in the North and
North-West Atlantic Ocean. A reduction in conditional bias, i.e. an increase in reliability, is
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Figure 5.10: Same as Figure 5.9, but for conditional bias calculated with the ESMValTool
from the MPI-ESM-LR-pr and long-term simulations against observation from HadCRUT3v.
The difference in the conditional bias between the initialized and the uninitialized simulation
(bottom panel) is calculated from the absolute values of the individual conditional biases
that are shown in the upper row. This is why in the bottom panel, blue colors denote an
improvement, i.e. increase in reliability by initialization. Also note the different color scales.

found only over the North-East Atlantic Ocean, the Gulf of Mexico and southwest of South
America, which corresponds to the higher anomaly skill found in the same regions (compare
to Figure 5.9).

The pr and long-term simulations also have similar regions of low and high MSSS values (Fig-
ure 5.11), with negative accuracy in the Pacific Ocean and over most parts of the American
continents, and positive skill in the Indian Ocean and over East-Asia. The MSSS of pr relative
to the uninitialized hindcasts (bottom panel) shows that areas of declined accuracy due to
initialization dominate. Only the North-East Atlantic region and, again, the southwest coast
of South-America show a notable increase in accuracy.

In conclusion, the initialization of the MPI-ESM can increase the forecast skill measured by
the anomaly correlation, the reliability measured by the conditional bias and the accuracy
measured by the MSSS of lead years 2-5 of predictions of near-surface temperature in the
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Figure 5.11: Same as Figure 5.9, but for the MSSS calculated with the ESMValTool from
the MPI-ESM-LR-pr and long-term simulations against observation from HadCRUT3v. In
the bottom row, not the difference, but the MSSS of decadal hindcasts against long-term
simulations is shown.

North Atlantic Ocean and southwest of South America. For almost all the rest of the globe,
no further predictive skill can be derived due to initialization, as for these regions the condi-
tional bias increases and the anomaly correlation and MSSS decrease from the prototype to
the long-term model version.

The statements made in this section are all based on the lead years 2-5. Following the example
of Pohlmann et al. [2013], Figure 5.12 depicts the global mean of each metric as a function of
lead time for annual averages (left) and 4-year averages (right) to also allow an assessment of
different lead times. For all metrics, b0-LR performs markedly worse than b1-LR, pr and long-
term. Otherwise, the b1-LR and pr hindcast systems are relatively similar to the uninitialized
simulations.
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Figure 5.12: Global mean hindcast skill (anomaly correlation, upper row), conditional bias
(middle row) and MSSS (bottom row) as functions of lead time following the example of
Figure 3 in Pohlmann et al. [2013]. Tested are the decadal predictions systems b0-LR (blue),
b1-LR (green) and prototype (red) and the long-term simulations (black) of the MPI-ESM-LR
against observations from HadCRUT3v for annual averages (one-year lead times, left column)
and lead times consisting of 4-year averages (right column). The time range is the same as in
Figures 5.6 to 5.8.
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5.3 Forecast Skill of Ensemble Mean Sea-Ice Concentra-
tion in the MiKlip Decadal Predictions

The observed negative trend in September Arctic sea ice of more than 30% since the late
1970s [Stroeve et al., 2012] was underestimated by CMIP3 climate models [Stroeve et al.,
2007; Rampal et al., 2011]. However, efforts of improving simulated sea-ice components and
atmospheric circulation have resulted in a better-represented Arctic sea-ice trend in the CMIP5
models [Notz et al., 2013; IPCC, 2013].

In contrast, the CMIP5 models simulate a small sea-ice decline in the Antarctic that is not
observed [Turner et al., 2013]. It has to be noted that a change in the satellite data processing
for the Bootstrap algorithm dataset has been made in the mid-2000s [Eisenman et al., 2014].

Building on work by Hübner [2013] and Bräu [2013] who qualitatively evaluated the sea-ice
representation in long-term and decadal simulations with the MPI-ESM, here the verification
system that was tested in Section 5.1 is applied to sea ice. In particular, the anomaly correla-
tion metric is applied to sea-ice concentrations to quantitatively assess the prediction skill in
the MiKlip prediction systems compared to the long-term simulations.

Sea-ice concentration, or sea-ice area fraction, is the area covered by sea ice relative to a
reference area, i.e. the degree of sea-ice cover of each grid cell [Cavalieri et al., 1996]. From
sea-ice concentration maps, sea-ice area and sea-ice extent can be derived, which are impor-
tant indicators of climate change.

This section follows the structure of Section 5.2, by first identifying the prediction system with
the best correlation skill (Section 5.3.1) and by then comparing this system to the long-term
simulations (Section 5.3.2). As is common for sea-ice assessments, the focus is on summer-term
sea-ice (September in the Arctic and March in the Antarctic), to evaluate the representation
of the month with minimal sea-ice concentration. Similar to the results for temperature, only
skill or differences in skill of stastically significant magnitude are considered for the assessments.

An important note about the following figures: grid points where the standard deviation over
all time steps is zero (for example, grid points that never contain ice in the evaluated calendar
month, like September in the Norwegian Sea), had to be set to missing values, as the standard
deviation is the denominator in the correlation calculation (see Chapter 4.2.2). A grid point
with constant values over the whole time-series (thus leading to a standard deviation of zero
for that grid point) is very unlikely to appear in temperature data, but has to be accounted
for the sea-ice assessment. This problem is most obvious when looking at minimum sea-ice
extents: in March, sea ice exists only on a rather small band around the Antarctic continent.
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5.3.1 Comparison of Different Versions of the MiKlip Decadal Pre-
diction Systems

The anomaly correlation of September mean Arctic sea-ice concentrations for lead years 2-5
(Figure 5.13) reveals that pr has the highest overall prediction skill of the three MiKlip decadal

Figure 5.13: Ensemble mean hindcast skill (anomaly correlation) of September mean Arctic
sea-ice concentrations in the three MiKlip decadal prediction systems against observations
from HadISST as calculated with the ESMValTool. In the top row, initialized simulations from
(from left to right) b0-LR, b1-LR and pr against observations are shown. The bottom row
depicts the difference of the anomaly correlation skill between b1-LR and b0-LR (left panel)
and pr towards b1 (right panel). The selected lead time is years 2-5 of decadal experiments
initialized every year from 1960 to 1995. The 60◦ N and 75◦ N circles of latitude (dashed
circles) are shown for reference. Black dots denote skill or differences in skill exceeding the
5-95% confidence level.
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Figure 5.14: Same as Figure 5.13, but for March mean Antarctic sea-ice concentrations. The
60◦ S and 75◦ S circles of latitude (dashed circles) are shown for reference.

prediction systems (top row). Whereas some grid cells between 90 and 75◦ N in b0-LR and
b1-LR show negative correlation coefficients, pr has a positive hindcast skill almost everywhere
over the Arctic. A comparison between b1-LR and b0-LR (bottom left) and pr and b1-LR (bot-
tom right) indicates that pr performs best in terms of hindcast skill around the North Pole
region down to 85◦ N and east of Svalbard, whereas the b1-LR system has higher correlation
values north of Canada and Northeast Asia (Beaufort and East Siberian Sea) and in the Baffin
Bay and Laptev Sea.

For March mean Antarctic sea-ice concentrations (Figure 5.14, also for lead years 2-5), pr
shows overall highest correlation skill again (upper right panel), especially in the Ross Sea.
Since the difference plots (bottom row) barely show any significant grid points, final conclu-
sions of possible improvements over predecessor versions cannot be made.

In total, for the lead years 2-5, the pr system appears to have the highest skill among the
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three MiKlip decadal prediction systems. Therefore, and for similar reasons as for surface
temperature, pr is chosen for the comparison to long-term simulations in the next section.

5.3.2 Comparison of the MiKlip Decadal Prototype System to Long-
term Simulations

For temperature, an additional hindcast skill could be achieved by initialization for the lead
years 2-5 only for certain regions. To assess, whether this is different for sea-ice concentra-
tions, similar to Section 5.2.2, the decadal prototype system is compared to the long-term
simulations in this section.

The prediction skill for September mean Arctic sea-ice concentrations (Figure 5.15, top row)
is positive almost everywhere for pr, but the highest correlation coefficients up to 0.9 are
found for the long-term simulations over the Barents Sea and around the Queen Elizabeth
Islands. The overall high hindcast skill is due to a well-represented Arctic sea-ice decline in
both the long-term and decadal simulations of the MPI-ESM [Notz et al., 2013; Bräu, 2013].
The difference between pr and long-term (right panel) reveals that additional hindcast skill
in September mean Arctic sea-ice can be achieved through initialization in some regions, in
particular at very high latitudes north of 85◦ N, in the eastern Laptev Sea and between the
East Siberian and the Beaufort Sea.

For March mean Antarctic sea-ice concentrations (Figure 5.15, bottom row), pr and long-term
show similar positive hindcast skill in the Weddell Sea, but differ substantially in the Ross Sea.
Here, the difference plot on the right reveals that for Antarctic sea-ice concentrations of lead
years 2-5, additional skill through initialization can be achieved in this region.

In conclusion, the initialization of the MPI-ESM can significantly improve the hindcast skill of
sea-ice predictions in a few distinct regions for the lead time years 2-5. As for surface tem-
perature, an additional global mean skill cannot be achieved. It has to be further evaluated,
if for different time ranges and lead time selections the regions of improved forecasts remain
the same or can even be extended.
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Figure 5.15: Ensemble mean hindcast skill (anomaly correlation) of September mean Arctic
(top row) and March mean Antarctic (bottom row) sea-ice concentrations from MPI-ESM-
LR-protype decadal hindcasts (left column) and -LR long-term simulations (middle column)
against observations from HadISST as calculated by the ESMValTool. The right column depicts
the difference between the two respective anomaly correlations, with the long-term subtracted
from the prototype version. Evaluated are the decadal experiments initialized every year from
1960 to 1995 with a lead-time selection of years 2-5.
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5.3.3 Discussion of the Applicability of the Verification System to
Sea Ice

Goddard et al. [2013] applied their verification framework to near-surface air temperature and
precipitation data. In Figure 5.16, the probability distribution functions (PDF) of global near-
surface temperature anomalies from HadCRUT3v (see Chapter 3.2.1), monthly precipitation
from GPCCv6 [Schneider et al., 2011] and sea-ice concentrations from HadISST (see Chap-
ter 3.2.2) are shown. The distribution of surface temperature (left panel) is Gaussian, but
both precipitation (middle) and sea-ice concentrations (right panel) do not show a Gaussian
distribution. Thus the question arises whether the metric calculations applied in this thesis
result in utilizable information with other than normally distributed data.

The PDF of sea-ice concentration reveals that almost 80% of the values are zero. This is
expectable, as most areas of the Earth’s oceans never contain ice. To enable a more detailed
look at the distribution of sea-ice concentrations apart from zero, Figure 5.17 depicts the
right panel of Figure 5.16 for probabilities of less than 4%. Here, a second maximum at 1 is
revealed, making this distribution function qualitatively look like the vertically mirrored pre-
cipitation PDF.

Goddard et al. [2013] applied the verification to precipitation in addition to temperature. It
was therefore applied here to test the prediction skill of sea-ice concentrations. The result-
ing qualitative statements probably also hold for variables that are not normally-distributed.
Furthermore, the verification system only contains assessments made for each variable individ-
ually. Only an inter-comparison of two or more differently distributed variables is likely to cause
problems. However, the application limitations of the metrics for non-Gaussian distributions
will need to be further examined in follow-up studies.
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Figure 5.16: Probability distribution functions (PDF) of global (from left to right) near-surface
air temperature anomalies, precipitation over land and sea-ice concentrations for monthly
values of all calendar months from different observation datasets. All PDFs were calculated
with 1000 bins of equal size.

Figure 5.17: Probability distribution function of sea-ice concentration for monthly means of
all calendar months from the HadISST observation dataset. The PDF was calculated with
1000 bins of equal size. The ordinate is only shown up to 4%, as only the bin containing
sea-ice concentrations equal to zero has a higher percentage.
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Chapter 6

Summary and Outlook

In this thesis, a quantitative assessment for decadal climate predictions of near-surface air
temperature and sea-ice concentration from the low-resolution version of the Max Planck
Institute Earth System Model (MPI-ESM-LR) was done. Decadal prediction experiments pre-
dicting the near-term future of 10-30 years are carried out with longterm climate models that
have to be initialized with observational data due to the dependence on initial conditions. In
order to evaluate the science question of whether the initialization of climate models leads
to a better predictability of future climate, a verification framework for decadal prediction
experiments, introduced by Goddard et al. [2013], has been implemented into the Earth Sys-
tem Model Validation Tool (ESMValTool). The ESMValTool is a software tool developed by
multiple institutions which aims at improving routine Earth system model (ESM) evaluation.
The verification system allows an assessment of the accuracy, correlation skill and reliability of
retrospective decadal forecasts (“hindcasts”) compared to observations through the applica-
tion of the three metrics “mean squared skill score”, ”anomaly correlation“ and ”conditional
bias“, respectively. These metrics were applied to the three MPI-ESM decadal prediction sys-
tems, that differ mainly in the employed initialization technique, and the longterm simulations.

Each decadal experiment ensemble is initialized with observational data from a different point
in time and then integrated for 10 years without further influence by observations. The hind-
casts of the experimental setups evaluated in this thesis are initialized every year from 1960
to 1995. For the evaluation, different time periods (”lead times“) within the forecast range
of each experiment were assessed in order to explore the dependence of predictability on the
distance from the point of initialization.

For both surface air temperature and sea-ice concentration, no further global mean prediction
skill can be derived by initializing the MPI-ESM-LR, except for the first year after initializa-
tion. Thereafter, the model gradually ”forgets” the information content of the observations
and drifts towards its preferred biased state. The overall global mean skill of all three metrics
is generally comparable to that of the uninitialized long-term projections.

Although for global mean surface air temperature, no increase in predictability by initialization
could be found, the opposite occurs on the regional scale for some parts of the globe. For
example, for lead years 2-5, decadal predictions of the northwest Atlantic Ocean and southwest
of the South American continent show higher correlation coefficients, lower conditional bias
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(i.e., higher reliability), and better accuracy than the longterm simulations. The same region-
ality appears for sea-ice concentration hindcast skill, with the East Laptev Sea and regions
within 15◦ latitude around the North pole showing a significantly improved hindcast skill by
initialization for March mean sea-ice concentrations. For September mean Antarctic sea-ice
concentration, the Ross Sea could be identified as a region, where the initialization could po-
tentially improve the hindcast skill.

Furthermore, the employed initialization technique can have a strong influence on the predic-
tion skill for both temperature and sea ice. From the three MiKlip decadal prediction systems,
the two with additionally initialized atmospheric parameters perform significantly better than
the one only initialized with ocean variables.

Additionally, further metrics have to be implemented to more closely evaluate the presented
science question. As only deterministic metrics have been employed in this thesis, the verifica-
tion framework has to be extended by probabilistic metrics as well, like the Continuous Ranked
Probability Skill Score (CRPSS). The CRPSS is recommended by Goddard et al. [2013] to
address the science question of whether the model’s ensemble spread is representative for the
prediction uncertainty. Hereby, larger ensembles containing more than only three ensemble
members, like presented here, could be helpful to reduce noise and increase the signal-to-noise
ratio and thereby the prediction skill [Eade et al., 2014].

Although Jia and DelSole [2012] could identify distinct spatial patterns of predictability of
temperature and precipitation that are shared by multiple climate models, additional models
and variables have to be included in the assessments to provide a concluding answer to the
question, whether the initialization of climate models can lead to a higher predictability of
near-future climate change.

To ensure the comparability and reproducibility of the results of such assessments carried out
by different science groups, an exact specification of all utilized parameters of the input data
(e.g., model and observational data versions, selected ensemble members, or the initialization
frequency of the decadal hindcast experiments) and a comprehensive and detailed description
of all the preprocessing steps prior to the actual metric calculations are required. Different
conventions exist for which techniques to apply in order to adjust the model output, like a
mean bias correction or cross-validation. For example, Eade et al. [2014] recently suggested the
correction for the Ratio of Predictable Components (RPC) to reduce under-estimation of po-
tential skill and predictability [Eade et al., 2014] as an additional step to the recommendations
made by the ICPO’s World Climate Research Programme Report [ICPO, 2013]. In contrast,
they omit the cross-validation, as they claim it to lead to an under-estimation of the correlation.

Furthermore, Kharin et al. [2012] recommend detrending techniques to avoid inflation of corre-
lation by the capturing of a climate change signal (see also Smith et al. [2014]). As an additional
example, in derogation from the suggestions by Goddard et al. [2013], the MurCSS-Tool cal-
culates the difference between the conditional biases of two datasets without consideration of
the respective absolute values. This leads to a different interpretation of the results.

All in all, there are many different approaches to evaluate decadal climate predictions. Hence,
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there is strong a need for a general and official guideline to ensure comparability and repro-
ducibility of the different studies.
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