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Lecture, Summer term 2011, LMU Miinchen

Lecture 1 (27 April): Introduction to Global Atmospheric Modelling

Lecture 2 (04 May): Physical Climate Models & Fundamentals Atmospheric Radiation
Lecture 3 (11 May): Fundamentals: Chemistry

Lecture 4 (18 May): Numerical Formulation in CCMs & Steps in Model Formulation
Lecture 5 (25 May): Introduction into NCAR Command Language (NCL)

Lecture 6 (1 June): NCL practice (Dr Mattia Righi) Doppelstunde

An Introduction to Global Atmospheric Modelling

Lecture 4: Numerical Formulation in CCMs

Preliminary schedule:

Lecture 7 (8 June): moved to 1 June

Lecture 8 (15 June): Fundamentals: Dynamics

Lecture 9 (22 June): Model Evaluation and uncertainties in climate projections

Content:

+ Numerical Formulation in Atmospheric Chemistry Models

+ Methods to Solve Differential Equations

Lecture 10 (29 June): International climate modelling activities: Part 1
Lecture 11 (6 July): EXAM

Lecture 12 (13 July): International climate modelling activities: Part 2
Lecture 13 (20 July): Summary

« Steps in Model Formulation

Final Exam: 6 July 2012, 8:00-10:00
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Gekoppelte Chemie-Klima Modelle (CCMs) Lecture 4: Numerical Formalation, page 3 Lecture 4: Numerical Formalation, page 4

Emissions of natural and
anthropogenic gases

Numerical Formulation

Concentrations of
radiatively active gases
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Solar Cycle
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11-year solar cycle and major volcanic eruptions
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Building a chemical model Lecture 4: Numerical Formulation, page 5 Equation for Chemical Box Models Lecture 4: Numerical Formulation, page. 6

Determination of C; (Determination of chemical loss and production rates)

c - dly,] —R-Ly] Different chemical reactions

dt * bi-molecular

d [yl] P . I—| [yl] - tri-molecular

dt i i i R= _ij,[j][l]+2jm[m] « thermal decay
jeite

L= Zkij[j]+ ki

i
k; : reaction coefficients
P: Chemical Production jn. : photolysis rates

« heterogeneous

« photolysis

L: Chemical Loss Determination of C; implies simultaneous solution of up to hundreds of coupled differential

equations, containing many non-linear reactions.

F oenscesseanm F oenscesseanm
. i

DR fir Lut- und Ray




Lecture 4: Numerical Formulation, page 7

Reaction Rate Coefficients

How do we determine the reaction rate coefficients?

Chemical Kinetics
The study of reaction rates (the change in reactant and product
concentrations as a function of time).
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Factors that Effect Reaction Rates

A. Concentration —As concentration increases, the reaction rate
increases.
Reaction Rate o Concentration

B. Physical State of Reactants — Reactants must mix and collide
in order to react.

C. Temperature — As temperature increases, the reaction rate
increases.

Reaction Rate oc Temperature

D. Catalyst — A substance that increases the rate of a
reaction without being consumed in the process.
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The Differential Rate Law
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How does the rate of the reaction depend on concentration? E.g.

m+n:
3A +2B > + Overall
order of
rate = k [A]"[B]" the
reaction
(Specific Order of Order of
reaction) reaction reaction
rate with with
constant respect to respect o
A B

Each reaction is characterized by its own rate constant, depending on the nature
of the reactants and the temperature

In general, the order with respect to each reagent must be found experimentally
(not necessarily equal to soichiometric coefficienct)
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Elementary Processes and Rate Laws

Reaction mechanism:

The collection of elementary processes by which an overall reaction occurs
The order of an elementary process is predictable

Unimolecular A*>B KIA] Elrrdsetr
Bimolecular A+B>C+D K [A] B] f;ceornd
Termolecular A+B +C>D+E k [A] [B] [C] Z::;;dr
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Chemical Kinetics

A reaction

A + B -> products

proceeds at a rate proportional to the concentrations raised to some power

Rate:M:@f

dt dt k[A]“[B]ﬂ

. k is the rate coefficient (rate constant). The powers a and b are the
order of the reaction with respect to the reactants i.e.

oA + BB -> products

® If for example a=b=1 then the reaction is called a second order

reaction (a+p=2).
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Chemical Kinetics: Bimolecular Reactions

A reaction

A+B->C+D

proceeds at a rate proportional to the concentrations raised to some power

diAl__dIC] _

it a = GlAlE]

* k is the rate coefficient (rate constant).

® Kk, can be calculated by Arrhenius Law: the rate of a chemical reaction
increases exponentially with the absolute temperature.

B
k, = Ae 7T
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Microscopic View of Reaction Rates

B. Arrhenius Equation

« Summarizes the tenets of collision theory into an
equation that can be used to calculate the rate constant
for a reaction.

_EV
k = rate constant = Ae /RT
/

Fraction of molecules with
sufficient energy

Frequency factor

R =8.315 x 103 kJ/Kemol
T = temperature (K)
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Microscopic View of Reaction Rates

B. Arrhenius Equation

* E, can be determined by finding k for a reaction
experimentally at several temperatures.

B

k= Ae{%T

Take In and rearrange

|n(k):|n(Ae’%) = |nk:-%[$)+|n;\ 5,

N L)
l;]-\m'r'
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Chemical Kinetics: Tri-molecular Reactions

A reaction

A+B+M->C+M

proceeds at a rate proportional to the concentrations raised to some power

d[A] _
i k[A][B]

ko(T)[M] )
T (ko (T M K(T0)

Fit between low and high pressure case

k(M) = FM,k(T) e (),

High pressure case

N - [
e = }'{:":wkﬂ (M,T). Yoo £ 3 Tog ik

Ml
Determination of ko and K in the lab at T=300K

Low pressure case

fo= lim f(M,T). Rogey () = K22, (T 300) %0

JPL catalogue: ko, n, k o0, m

Lecture 4: Numerical Formulation, page 16

Chemical Kinetics: Heterogeneous Reactions

Reactions that occur at the
interface between condensed and
gaseous phases, i.e. the surface

A reaction het

A+B ->C+D
In liquids, the reactions tend to be
inside the particle.

Insolids, the diffusion from the
d[A] surface is extremely small, and the
T —k [AI[B] reactions are confined to the

d surface.
On liquid surfaces _
® =8k, T /7m
Kpe = wTAy A: surface

v : uptake coefficient

On solid surfaces
[A]: concentration
2
[ Ao Aln [ mean free path length
o Le3prial) r radius

v sticking coefficient (reaction probability)
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Photolysis Rates

First order reaction

A+hv->C+D

Time Dependence for A (J is the photolysis frequency [s™"]):
dA]
T —I[A]

Example:

Oy +hv (< 242nm) — 20,
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Photolysis Reaction Rates

Species A undergoes photodissociation.

Reactioni: A+ hv — products

A absorption Reaction i Wavelength
cross section  quantum yield
d[A] g (in
A v v
L - —[A]~Iax(i) #(AT,..) E(4,..)dA
dt reaci - - ,/ \\\
g
Action spectrum Spectral
actinic flux
%f —

A concentration rate of Reaction rate coefficient j
change due to

photolysis reaction i

J= ﬁ (o) f (3,8, 0} dord.




Recommended Set of Equation for Stratospheric Modelling  Lecture 4 Numerical Formuiation, page 19

[ —— Wallenllsgm
T =Fan =T TH-owam O
E T = e Tlore v7 2l (19501 T im0

TTon Ty o7 ot (1758}
v SHCORH 3) Delioee e7al Doy eval (1998]
b bdcller (19911
T O 0 Dkl o7 al 1195 TRy el (17

T
0% by = O
T s 0 O

ol o

o ¢ e VR oy
FIOND + by —s 00 %
o
I, v =-s ok & T80

T s OIS

TIPS, 3 o s N, £ G

amphokden o [y o o (1956

#’ Beutsches Zenus
nd

Recommended Set of Equation for Stratospheric Modelling  1octure & Numerical Eammintion nane 20

b Simger v al. {1980 19

p =3.11 mbar,

T
T=2523K. . LI
Photolysis e
frequency for e
SZA=60°, :
h=39,63 km. -

v ST Proi

T =1 i

TR, & 5 s O F] ORI

ST T ool

G
T T O]
T — Prsklie

T o Prokiie

Tl v = B £ 00T

Tiilin, & s Prodkie
Cir I

T Peedn
Deutiches Zentrum
DR ir Luft-und .

Recommended Set of Equation for Stratospheric Modelling  Lecture 4 Numerical Formuiation, page 21

p =3.11 mbar,

- k
T=2523K 0; +hv — 10 Z4H-10)
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p =3.11 mbar, T = 252.3 K. Photolysis frequency for SZA=60°, h=39,63 km.
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Determination of C; (Determination of chemical loss and production rates)

Different chemical reactions
St : * bi-molecular

« tri-molecular

R= _Zkﬂ[j][l]“‘zjm[m] « thermal
j et

i |20
L= Zkij[j]+ ki

1
k; : reaction coefficients
Jnn : Photolysis rates

« heterogeneous

« photolysis

Determination of C; implies simultaneous solution of up to hundreds of coupled differential
equations, containing many non-linear reactions.

Set of stiff differential equations => Numerical Solution difficult
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ODEs and PDEs
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Ordinary differential equation (ODE)
Equation with one independent variable

Partial differential equation (PDE)
Equation with more than one independent variable

rder o .
Highest derivative of an equation

Degree
Highest polynomial value of the highest derivative

Initial value problem
Conditions are known at one end of domain but not other

Boundary value problem
Conditions are known at both ends of domain
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ODEs and PDEs

Lecture 4: Numerical Formulation, page 28

Ordinary Differential Partial Differential
Equations Equations
First-order, ~first{ (a) dN _ 16— 4N2 ( oN N ouN)
d dt ot ox
egree
First-order, first{ () ‘L_’;‘ —3AB - 4NC ® i—u+u 5_LI+ v% —0
degree t X y
Second-order dZN dN 02N 02N 2
' (€) == +==+5t=0 @ == =3t +x
first-degree dt2  dt o2 ox2
Second-order, dZNJZ dN (5‘2N]2 N
second-degree @ [ a2 tartaso | 12 T X

F oenscesseanm
on e R

Source: Jacobsen, Fundamentals of Atmospheric Modeling
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Operator Splitting Scheme

Major processes in an atmospheric model are often solved separately from each other
Suppose a model has dynamics, transport, radiation and gas chemistry
Each of these processes may be solved sequentially during a common time interval

Time step
is an increment in time for a given process

Time interval
is the period during which several time steps of a process are solved

Example
time step dynamics 15 min, transport 15 min, radiation 45 min (every 3 time steps),
chemistry variable, time interval common to all is 45 min => during the time
interval 3 dynamics and transport time steps are taken, followed by 1 radiation time
step, followed by a variable number of chemistry time steps; after the dynamics time
interval, resulting wind speeds are taken as input for transport calculations; during
the transport interval gases are moved around in the grid; this is input for the
chemistry calculations, and radiation.

Time interval 1

DW DW

Chemistry Chemistry
ol Modified from Fig. 6.1

Time interval 2
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Source: Jacobsen, Fundamentals of Atmospheric Modeling

Differences GCM and NWP models

Lecture 4: Numerical Formulation, page. 30

Major difference between GCM and NWP model: climate model is used to project the
average behaviour of the atmosphere (its climate) as a result of slow changes in some
boundary conditions (such as the solar constant) or physical parameters (such as the
greenhouse gas concentration) and not to make a deterministic prediction of the exact
weather at a specific time.

A chaotic nature of the fluid dynamics equations is involved in weather forecasting. Extremely
small errors in temperature, winds, or other initial inputs given to numerical models will
amplify and double every five days, making it impossible for long-range forecasts—those made
more than two weeks in advance—to predict the state of the atmosphere with any degree of
forecast skill. Furthermore, existing observation networks have poor coverage in some regions
(e.g., over Pacific Ocean), which introduces uncertainty into the true initial state.

The unpredictable, chaotic nature of the atmosphere means that deterministic predictions
are not possible. However, it is possible to predict changes in climate due to changes in
boundary conditions, such as exchanges with the ocean or the land surface, or changes in
external forcing factors, such as changes in solar radiation or GHGs.

NWP models are used to predict the weather in the short (1-3 days) and medium (4-10
days) range future. GCM's are run much longer, for years on end, long enough to learn about
the climate in a statistical sense (i.e. trends, means and variability).

GCMs ignore fluctuating conditions when considering long-term changes, whereas NWP
models take no notice of very slow processes.
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A comparison between NWP models and GCMs

Lecture 4: Numerical Formulation, page 31

contrasts NwP GCM
goal to predict weather to predict climate

spatial coverage regional or global global

temporal range days years

spatial resolution variable (20-100 km) usually coarse

relevance of initial conditions high low
relevance of clouds, radiation low high
relevance of surface (land, ice, ocean...) low high
relevance of ocean dynamics low high
relevance of model stability low high
similarities
physics

equations of motion (plus radiative transfer equations, water
conservation equations ..)

method Finite difference expression of continuous equations, or spectral

representation; run prognostically

Lecture 4: Numerical Formulation, page 32

Methods o Solve iiterential quations
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Finite Difference Approximation

Lecture 4: Numerical Formulation, page 33

Taylor Series Expansion Lecture 4: Numerical Formulation, page. 34
First, replace continuous function u, with a finite number of values in the x direction. . . X X
Second, define differences of du at point x; Taylor series expansion of concentration N at point x+Ax (6.11)
= AU = Uj4] — Uj— it Ny, 1 20%N, 1 38N, 1 a*N
i i +1 j—1  central difference Nysax = Ny + AxX +_AX2 2)( +_AX3 3)( _AX4 4)( o
ox 2 ox 6 ox 24 ox
- Aul = Uj+1 — Uj forward difference
Taylor series expansion of concentration N at point x-Ax (6.12)
= AU =Uj — U1 backward difference \ ~ oN l 29 2 Ny _1 3 53 Ny i 4 54NX
x—Ax = Ny — Ax—=% + = Ax 7 — = AX 3+ AX i
ox 2 X 6 X 24 X
Central difference approximation to tangent slope at x; N
u
a_u Au _ U; ] _u-_] A Uy
OX T AX Xia1—Xiq ’/
X
Ui-1 Ui Uisy Ui
4 > 4+ X-AX X xtax X
i1 i i+l ‘#7 Xj.1 Xj Xjr1
% X Xis1 Xia2 DuR il e R Source: Jacobsen, Fundamentalsof Atmospheric Modeling
Source: Jacobsen. i 1
Finite Difference Approximations Lecture 4: Numerical Formulation, page ~ 35 Finite Difference Approximations Lecture 4: Numerical Formulation, page 36
Sum the Taylor series expansions (6.13) Subtract the Taylor series expansions (6.17)
2 4 N, 1. 33N
20N, 1 4 9%N, _ x,1,.3 X
N + Ny_aAx = 2Ny + AX += AX +... Nx+ax — Nx—ax = 2Ax + 7 AX +..
X+AX X—AX X 6x2 12 6X4 X 3 6x3
Rearrange (6.14) Rearrange (6.18)
aZNx Nyrax = 2Ny + Ny Ay 2 ONy  Nysay =Ny ay 2
2 - 2 +0(Ax ox 2 +0(Ax
ox AX X Ax
Truncation error (neglect 2"-order terms and higher) (6.15) Truncation error (6.19)
2 1 20%N, 2 1. 23N,
O(Ax ): - AX 7 O(Ax ): —— AX 3
12 ox 6 ox
2nd-order central difference approx. of 2" derivative (6.16) 2nd-order central difference approx. of 1% derivative (6.20)
2
9Ny ~ Ny ax = 2Ny + Ny Ay ONy ~ Nyiax =Ny ax _ Njiq = Njq
axz AX 2 OX 2AX 2AX




Finite Difference Approximations Lecture 4 Numerical Formulation, page. 37 Differencing Time Derivative Lecture 4 Numerical Formulation, page. 38
First two terms of Taylor series
Central, forward, backward difference approximations (6.23)
1st-order forward difference approx. of 1%t derivative (6.21) 5Nt N NI:!: h — NI— h
at 2h
O‘Nx - Nx+Ax — Nx — Ni+1_ Ni
X AX AX ONt  Nppp =Ny
ot h
1st-order backward difference approx. of 1% derivative (6.22) 5Nt N NI -N t—h
ot h
aNx ~ Ny =Ny ax _ Nj —Nj 4
[) AX AX

Consistency, Convergence Lecture 4: Numerical Formulation, page 39 Stability

Lecture 4: Numerical Formulation, page 40

A numerical solution can replicate an exact solution to a PDE if several criteria are met: Stablity occurs if the absolute-value difference between the numerical and the exact

solution does not grow over time (often depends on the time step used).

Convergence of finite difference analog (6.6)
AN Stability . (6.9)

— = lim [|— lim Ne, xt — Nf'X1[||SC

0X  Ax— ol Ax t—> o
Consistency of finite difference analog 6.7) Conditionally stable: Stable for limited time-step range

Unconditionally stable: Stable for all time steps
AN Unconditionally unstable: Unstable for all time steps
lim |[T.E.—|]|=0 - o -
AX—0l AX An unconditionally unstable scheme cannot be convergent overall, but individual finite-

difference analogs in an unstable scheme may converge and may be consistent.

Convergence of overall solution (N,: exact solution; Ny finite-difference solution (6.8) In oth%r_l\(vords, consistency and convergence of individual analogs do not guarantee
stability.

lim ”N ex,t— N ¢ X ,t" =0 Stability is guaranteed if a scheme is convergent overall and its finite-difference analogs

AX,At—>0 are convergent and consistent.

F oenscesseanm
Source: Jacobsen, Fundamentalsof Atmospheric Modeling DUR it e et Source: Jacobsen, Fundamentals of Atmospheric Modeling
Stiff Problems Lecture 4 Numerical Formulation, page. 41 lProperﬂas of ODE Solver Lecture 4 Numerical Formulation, page. 42
Stable

If the absolute-value difference between the numerical and the exact

solution does not grow with time
Sets of chemical lifetimes of species vary by many orders of magnitude

e The analysis of stiff circuits requires the use of variable step sizes

Accurate
« Not all the linear multistep methods can be efficiently used to integrate stiff Check time-dependent solution from the solver with an exact solution
equations
To be able to choose At based only on accuracy considerations, the region of absolute Mass-conservmg Lo
stability should allow a large At for large time constants, without being constrained by the A scheme is mass-conserving if the mass of each element (e.g. N, O, H,
small time constants

etc.) summed over all species at the beginning of the simulation equals the
mass of the element summed over all species at the end of the simulation

Positive definite

If a scheme always predicts non-negative concentrations

See further details for example in Sandu & Sander, 2006 East

A good solver can take long time-steps and maintain accuracy
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[ Methods for the chemical part

Lecture|4: Numerical Formulation, page 43

« Analytical solution

« Classical numerical methods for stiff ODEs
e Taylor series solution
e Forward-Euler Solution
e Multi-step implicit Solution
e Backward-Euler Solution
e Gear's Method
e Implicit and semi-implicit methods
e Family Solution

Initial Value Problems

Lecture 4: Numerical Formulation, page. 44

Values are known at an initial time and desired at a final time

Concentration of species i is known at time t-h=0 (12.2)
Nit-h = Nio
Vector of concentrations at time t for a set of K species (12.1)

l:lt = [Nl,t| Nz’t,..., Ni’t,..., NK,t]

*  During a time step, an ODE scheme solves for all N;;
«  Once values at time t are found, tis replaced with t-h and a new time step is solved

+  h:one time step

Source: Jacobsen, Fundamentals of Atmospheric Modeling

Analytical Solution to ODEs (most accurate)

Lecture 4: Numerical Formulation, page 45

Nitrogen dioxide photolysis (12.4)

NO, + hv — NO + O »

Time rate of change of NO, concentration (12.5)
d[NO,]
=-J|NO
m [NO2]
Analytical solution (12.6)

[NO2 ] = [NO2}_pe™™"

Example: «  Analytical solutions to a set of
[NO,], =10 molec. cm? ODEs are usually impractical
J =0.02s* to obtain

. = 1010 g-002t . .
[NO,J, =10%e => Numerical solutions are

used in atmospheric models

Source: Jacobsen, Fundamentals of Atmospheric Modeling

Taylor Series Solution to ODEs

Lecture 4: Numerical Formulation, page 46

Explicit Taylor series expansion for one species (12.7)
Ni < Ni +thi,t—h +h_2 dZNi,t,h +h_3 dSNi’t,h
it i,t-h dt 2 dtz 6 dt3
Taylor series expansion for NO (128)

d[NO},_, h? d?[No}_, hd d®[NO],
[NOJ =[NO)_p +h it T2 02 *75 a3 *e

Source: Jacobsen, Fundamentals of Atmospheric Modeling

'Fumily Method

Lecture 4: Numerical Formulation, page. 47

Organize short- and long-lived species into families, which are long-lived, solve for family
concentration, then partition family concentrations into individual species concentrations

Odd oxygen family (12.92)
[071=[0] +[O(*D)] +[03] + [NO2]
Odd hydrogen family (12.99)
[HOT]1=[OH] +[HO2]+[H202]
Odd nitrogen family (12.94)

[NOT]=[NO] +[NO2]+[NO3]

Odd chlorine family (12.95)
[CIT]=[CI]+[CIO] +[CIO2]

& .

LRt Lt

Jacobsen, Fundamentals of Atmospheric Modsling

Grid and Time Resolution

» Computing power limits the amount of
calculation that can occur

* Thus, calculations are performed on a “grid” of
points

— Typically 5° x 5° horizontal grid (~ 555 x 555 km at
the Equator)

— Also divide the atmosphere into vertical layers

+ Since we are stepping forward in time, climate
models have 4 dimensions




Model Stability

« As spatial resolution increases, the time resolution
must also increase or climate models will not yield
a stable solution (they will “blow up”)

— This is called the CFL criterion, named after Courant,
Friedrichs, and Lewy, and is represented mathematically
as:

. . ** Richardson used
Fastest signal propogating a 6 hour time step (Ax
through the model domain =200 km) in
(e.g. a gravity wave in the D CAt his experiment. He
atmosphere with a speed of _— g 1 would have had to
300 m/s) AX used a time step of
8 minutes to find a
stable solution

Lecture 4: Numerical Formulation, page 50

Stens in Model Formulation
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Lecture 4: Numerical Formulation, page 51

Steps in Model Formulation

Define purpose of model (e.g., simulate tropospheric climate or stratospheric ozone)

Determine spatial and temporal scales of interest (e.g. global and centuries)

Determine dimension of model (e.g., 3D)

Select physical, chemical, dynamical processes treated (e.g., fully coupled)

Select variables (e.g. 10 meteorological variables and 150 chemical species)

Select computer architecture (e.g., parallel-processor machine)

Write code for model

Optimize memory and speed of model (e.g., minimizing global arrays)

9. Select time steps and time intervals (e.g., 300 s for a 5°x5° grid).

10.  Set initial conditions (e.g., use observations or output from previous model run)

11.  Set boundary conditions (e.g., set south-north velocities to 0 at poles)

12.  Select input data (e.g., topography, chemical rate coefficients, absorption
coefficients, emissions)

13.  Select ambient observations for comparison (e.g., satellite data to judge performance)

14. Interpolate observations and model results for inputs and outputs

15.  Select or write algorithms for statistics and graphics (e.g. by using NCL)

16.  Run model simulations

17.  Run sensitivity tests (e.g., to gauge the effect of model assumptions or processes)

18.  Improve model based on results (e.g., through comparison with observations)

B e seanm
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Steps in Model Formulation: 1. Define purpose

Lecture 4: Numerical Formulation, page 52

For example:
Understanding and Attributing
Climate Change

443 i Predicting the Future:
Climate Change; Source: IPCC 2007

Gotal surtace warmisg {'C)

AIFI

Steps in Model Formulation

Lecture 4: Numerical Formulation, page. 53

2. Determine spatial and temporal scales of interest (e.g. global and centuries)
3. Determine dimension of model (e.g., 3D)

F oenscesseanm
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The Atmosphere over Europe in a discrete model

Lecture 4: Numerical Formulation, page. 54
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Lecture 4: Numerical Formulation, page 55

The Atmosphere over Europe in a discrete model

European part of the land-sea mask for different T-model resolutions
wT b} TH

) T42

F o
DR Firte ot U. Cubasch

Spectral GCM

(b) SPECTRAL GCM

Numerical Formulation, page 56
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-
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Source: A Climate Modelling Primer, Henderson-Sellers & McGuffie, Figure 6.3(b)

6rid GCM Lecture 4: Numerical Formulation, page. 57

IN THE ATMOSPHERIC
coLuMN

Wind weetors

Humiaity
Ciouds
" Tamoaraturs
Haight
AT THE SURFACE T
Ground temparature, Harizontal excaange

water ana snaray | [ —

Tima step~30 minstas

Grid spacing~3*x 3*

Source: A Climate Modelling Primer, Henderson-Sellers & McGuffie, Figure 6.3(a)

Spaghetti Diagram for climate models

Figure 2.9 A generalized “spaghenti® diagram for climate models. The arrows show the
; links between a set of unnamed processes and variables. The processes which could be

eutsches Zentrum entered in the boxes and the variables in the circles depend crucially on the timescale
LR ar Lt und Raent

being modelled and the type of model employed.

Steps in Model Formulation

Lecture 4: Numerical Formulation, page. 59

Lecture 4: Numerical Formulation, page. 60

Physical Components in a climate model

Select variables (e.g. 10 meteorological variables and 150 chemical species)
Select computer architecture (e.g., parallel-processor machine)

Write code for model

Optimize memory and speed of model (e.g., minimizing global arrays)
Select time steps and time intervals (e.g., 300 s for a 5°x5° grid).

5.
6.
7.
8.
9.

Variables
Physical
Processes

# Beutiches Zentm
DR Fir Luf- und Raue
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TIllustration of the basic characteristics and processes within 'G“/GCM:merica Formulation. page 61

Hioripoetal pachange
e
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Source: McGuffie and Henderson-Sellers, 2001

Parameterization

» Since by necessity our grid is large, many things
occur at scales smaller than the grid size
— Clouds

* Model cannot “see” these things

» Parameterizations are employed to simulate the
large-scale feedback that small scale features
produce
— Calculate an “average” cloudiness over a grid box

Typical Climate Model
Parameterizations

» Convection and Clouds
— Mass, momentum, heat, moisture fluxes

— Fluxes are usually much larger at scales smaller
than a climate model grid size

— Radiation interactions
 Turbulence
Radiation

Boundary Layer
— Fluxes of heat, moisture, momentum

Components of a global climate model Lecture 4: Numerical Formulation, page. 64
ATMOSPHERE
[ I 1
R i Water
(Thermodynamic Equations i
Equaiion of Motion C"é‘;j:.’;:.““
= Turbulence Cloud
Racinion Parameterization izati
Sensible r
Heat Eragnation f Sensible fawpmn..n
Radiation ind Precipitation * Radiation +Precipilaliun
Stress
. Hydrologic
i "] Equations - Salt . & -
Themlgi«::mlc of Motion Enuation ‘Runuﬂ mgsfﬂ’::mm Equation
= Vegetation
urbulence
**| Parameterization*|  Sealoe | Landlce
L I J
OCEAN LAND
Fig. 10.1 Schematic diagram showing the components of a global climate model.
7 peuc
B Source: Global Physical Climatology, D.L. Hartmann, Figure 10.1

Lecture 4: Numerical Formulation, page. 65

Steps in Model Formulation

10.  Set initial conditions (e.g., use observations or output from previous model run)
11.  Set boundary conditions (e.g., set south-north velocities to 0 at poles)
12.  Select input data (e.g., topography)

‘#’ Deutiches Zentrum
DR Fir Luft- und Raumiahrt

Lecture 4: Numerical Formulation, page. 66

What do we need to start a GCM simulation?

. Initial Conditions

—-

» Possible existence of multiple attractors make the choice of initial
conditions far from trivial
» Possibilities for initial conditions:
» start from stable solution (e.g. an atmosphere without horizontal gradients)

» start close o an observed state (weather predictions, decadal simulations in
CMIP5).

» Spinup: time until the simulations is independent from the initial conditions
> depends on the application
short in the atmosphere due to the lack of inertia (few months)

v

processes at the land surface (in particular cumulative processes that depend on
the storage of water below the ground) have a large inertia and need several
years spinup

> even longer spinup is needed if the GCM runs with a coupled ocean

v

11



What do we need to start a GCM simulation?

Lecture 4: Numerical Formulation, page 67

2. Surface boundary conditions

a) Sea Surface Temperatures (SSTs) and sea-ice (or a coupled ocean)

b) Land-sea mask

c) Orography

d) Roughness length (Sea, Sea-ice, Land )

e) Vegetation

f) Albedo for different surface types

g) Emissions (6HGs, CFCs, ozone precursors etc.)

h)  Prescribed 3D concentration for aerosols and ozone (if not interactively

modeled)
i)  Solar forcing data

J)  volcanic aerosol dataset

F oenscesseanm
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a,b) Sea Surface Temperatures and Sea Ice: Land-sea mask ecture 4 Numerical Formiation, page 68

hadley 200001

Pink grid points:
Seaice L

26500 37EIT FTS0S IBO00 PESO0 29000 600 30000 30500 31000

F oenscesseanm
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LU el i Schisinge, Part 1, page 90

c) Orography

Lecture 4: Numerical Formulation, page 69

MEAN DRTORMHY HEIGHT, U 3.1 CLMATE WOCEL

Andes only poorly resolved
Alps not really visible

F oenscesseanm
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Lecture 4: Numerical Formulation, page 70

d) Roughness Length

The roughness length is used in numerical models o express the roughness of the surface.
It affects the intensity of mechanical turbulence and the fluxes of varies quantities above
the surface.

The 'roughness length' depends on the frontal area of the average element

(facing the wind) divided by the ground width it occupies. Vertical sub-gridscale heat
exchange (by furbulent eddies) can be expressed as the vertical gradient of potential
temperature times the roughness length.

A lower roughness length implies less exchange between the surface and the atmosphere,
but also stronger wind near the ground (e.g. at the standard height of 10 m).
A terrain classification based on roughness length is given in the following table:

| ™ rightess Larubcapy fealizes

[T = [—

B e pen mater, tadal (st sow wilh frich shove 3 L

S oot Testusrcions band, sx |
[ opes lat terrmes with graws of very kim " cgelstun, aepor fiswn

|

4| roughly spen culivated seva, low erops, cbstaches of height 1) separated by mt keast 20) 1
5 nigh e landwcaps. scasernd shetter helhs, pintacles separaind by 15 o |
[ rery rough 0s landicape with buibies, young dese forest eic separsicd by 10 H et |
7 clied I apen spaces comparsble with |1, eg imstuse forest low-aise boiltop area

o of Latpe chereacrt, e city centre, Lange forest with

! . « 20 wrogular driaril
T v| chaes =T ular

ote that 0.25 ents 25% of radiation reflecte

2 ool
iAo s

Source: A. Brown cleanngs

f) Typical Surface Albedos Lecture 4: Numerical Formulation, page 71 g) Emissions Lecture 4: Numerical Formulation, page 72

Soil, dark and wet 0.05 cHa,  Boundary conditions 1960 - 1999

Soil, light and dry 0.40 o E A A : b

Desert 0.20-0.45 - i

Savanna grassland, wet season 0.18 ]

Savanna grassland, dry season 0.23 g

Grass, long 0.16 i

Grass, short 0.26 e

Cropland 0.18-0.25 E

Orchards 0.15-0.20 k- 3

Forest 0.05-0.20 B R i e 3

Water, small zenith angle 0.03-0.10 Cly [peb] 3

Water, large zenith angle 0.10-1.00 0 . . . . . . . 40

Snow 0.40-0.95 1860 1965 1870 Is?fami.?::]ar:)sﬂﬁ 1980 1885 2000

F oenscesseanm
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Simulation design, preparation, integration, interpretation Lecture 4 Numerical Fornulation, page 73

Simulation design:
» Choice of model configuration, including model vertical and horizontal
resolution and complexity
» choice among the different subgrid scale parameterisations & parameters for it
» precise definition of the intial and boundary conditions that will be used for the
experiment
» incorporate the material and personal constraints that can limit the scope of
the simulation and try to find a reasonable balance between the scientific
interest of the simulation and the overall costs and human and computer time.

Preparation:
» prepare and check initial conditions and boundary conditions

Integration:
» start test runs (few months)
» Start run and check regularly
» Postprocess the output in order to bring out interesting results

Iaferprefaﬁon:
o Suiinterpretation of the results

The different steps in a GCM simulation

_____ Gbservation —— Storage of
and Sampling
esul
""" s Model Iteration

|

| Simulated
Parameters - Internal and climate
Fixed Fields - BOundary
Time-dependent fields Conditions

Short Description of the GCM ECHAM5 (1 of 8)

Lecture 4: Numerical Formulation, page 75

1.1 Short Desciption

The ECHAM model has been developed from the ECMWF model (cycle 31, November 1988). It
contains several changes, mostly in the parameterization, in order to adjust the model for climate
simulations.

The reference resolution is T42, but the model is set up to use resolutions in the range T21 to T106,
Long term integrations have so far only been done for T21, T30, T42 and T63. The layout is as
follows (indicates changes from the original ECMWF model):

1.2 Numerical solution

* Prognostic variables: e.g., vorticity, divergence, femperature, log surface pressure,
water vapour, cloud species

* Horizontal representation:
spectral transform, triangular truncation (T42/T63/T106); in all practicd
applications the series expansion of spherical harmonic functions must
be truncated at some finite point.

* Vertical representation:
hybrid coordinate system, second order finite differences, 19, 39,
and 69 layers

+ Time integration:
semi-implicit | leap frog with time filter, = 40 min (T21),
1= 30min (T30), t = 24 min (T42), t = 15 min (T63), and

F oenscesseanm t= 12 min (T106)
DL firlt d Rnamfa:

ECHAMS user manual

Short Description of the GCM ECHAM5 (2 of 8)

Lecture 4: Numerical Formulation, page 76

1.3 Surface boundary conditions

+ SST and sea-ice:
e.g. Hadley data set
* Orography: mean ferrain heights computed from high resolution US6S 6TOPO30 data set
+ Land-sea mask: from USGS 6TOPO30 data set
* Roughness length:
Sea: Charnock formula, modified after Miller et al. (1992)
Sea-ice: constant (0.01 m)
Land:  function of vegetation and orography (variance)
* Vegetation:
fraction of grid area covered by vegetation based on Wilson and Henderson -
Sellers (1985) data
- Albedo:
Sea: function of solar zenith angle bare
Land:  satellite data (Geleyn and Preuss (1983))
Sea ice: function of temperature (Robock,1980)
Land ice: function of temperature (Robock, 1980; Kukla and Robinson, 1980)
Snow:  function of temperature and fractional forest area (Robock, 1980; Matthews,
1983)

t#? Deutiches Zentrum
DR Fir Luft- und Raumiahrt ECHAMS user manual

Lecture 4: Numerical Formulation, page 77

Short Description of the GCM ECHAM5 (3 of 8)

1.4 Physical parameterization
Radiation: (Hense et al.,1982; Rockel et al, 1991; Eickerling, 1989)

* two-stream approximation
+ six spectral intervals in the terrestrial part
« four spectral intervals in the solar part

+ gaseous absorbers: H,0, €O, and O; (CO, and O; prescribed)

+ aerosols: prescribed

+ clouds: computed cloud optical depth and cloud cover

- emissivity: function of cloud water path (Stephens, 1978)

* continuum absorption: included

+ cloud overlap: maximum for contiguous clouds layer and random otherwise
+ diurnal cycle: included

* radiation time step: 2 hours

ECHAMS user manual

Short Description of the GCM ECHAM5 (4 of 8)

Lecture 4: Numerical Formulation, page 78

1.4 Physical parameterization

Clouds: (Sundquist, 1978; Roeckner and Schlese, 1985: Roeckner et al, 1991)

Cloud water transport equation

Subgrid-scale condensation and cloud formation
with different thresholds for convective and stratiform clouds (Xu and
Krueger, 1991)

Temperature dependent partitioning of liguid/ice phase (Matveev, 1984)

Rain natios by auto-conversion of cloud droplets (Sundquist, 1978)

Sedimentation of ice crystals (Heymsfeld, 1977)

See video on CLOUDS (EU-EUCLIPSE project) at

Evaporation of cloud water
http://www.youtube.com/watch?v=5UCb38Wzkl|

Evaporation of precipitation

B oo
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ECHAMS user manual
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Short Description of the GCM ECHAM5 (5 of 8)

Lecture 4: Numerical Formulation, page 79

1.4 Physical parameterization

Connvection: (Tiedtke, 1989)

Mass flux scheme for deep, shallow and mid-level convection
Clouds are represented by a bulk model and include updraft and
downdraft mass fluxes

Convective momentum transport
is parameterized according to Schneider and Lindzen (1976)

Evaporation of rainis parameterized according to Kessler (1969)
Stratocumulus convection

is parameterized as a vertical diffusion process with enhanced
eddy diffusion coefficients (Tiedtke et al., 1988)

ECHAMS user manual
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Short Description of the GCM ECHAM5 (6 of 8)

1.4 Physical parameterization

Land-surface processes: (Sellers et al., 1986; Blondin, 1989: Du"menil and Todini, 1992)

+ Heat transfer: diffusion equation solved in a 5-layer model with zero heat flux at the
bottom (10 m)

+ Water budget equation for three reservoirs:
soil moisture, interception reservoir (vegetation), snow

« Vegetation effects:
stomatal control on evapotranspiration and interception of rain and snow

* Run-off scheme: based on catchment considerations including sub-grid scale variations of
field capacity over inhomogeneous terrain

+ Sea-ice temperature
calculated from surface energy budget

ECHAMS user manual
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Short Description of the GCM ECHAM5 (7 of 8)

Lecture 4: Numerical Formulation, page 81

1.4 Physical parameterization

Planetary boundary layer: (Louis, 1979)

* Surface fluxes of momentum, heat, moisture and cloud water
are calculated from Monin-Obukhov similarity theory with transfer coefficients
depending on roughness length and Richardson number

« Above the surface layer:
eddy diffusivity approach with coefficients depending on wind shear,

thermal stability and mixing length

* Above the PBL:
vertical diffusion only for unstable stratification

* Cloud species

* Moist Richardson number (Brinkop, 1991; 1992)

Y
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Short Description of the GCM ECHAM5 (8 of 8)

1.4 Physical parameterization

Horizontal diffusion: (Laursen and Eliasen, 1989)
+ Scale selective operator applied beyond a threshold wave number

Gravity wave drag (Palmer et al, 1986; Miller et al, 1989)

+ Surface stress due to gravity waves, which are exited by stably stratified flow over
irregular terrain is calculated from linear theory and dimensional considerations

* Orographic forcing prescribed as a directionally dependent sub-grid scale orographic
variance computed from the high resolution US6S 6TOPO30 data set

« Vertical structure of momentum flux induced by gravity waves calculated from a local
wave Richardson number, which describes the onset of turbulence due to

convective instability and the turbulent breakdown approaching a critical level

* The GWD scheme is not used at T21 resolution
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