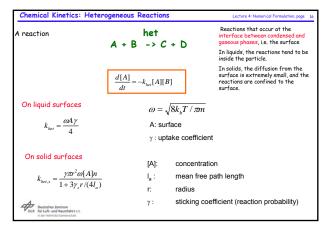
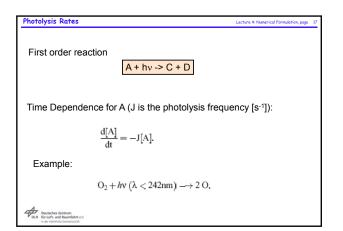
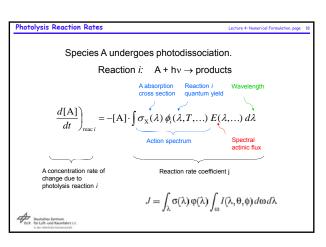

	f elementary processes by w elementary process is predi		chon occurs
Unimolecular	A* → B	<mark>k</mark> [A]	First order
Bimolecular	$A + B \rightarrow C + D$	<mark>k</mark> [A] [B]	Second order
Termolecular	$A + B + C \rightarrow D + E$	<mark>k</mark> [A] [B] [C]	Third order

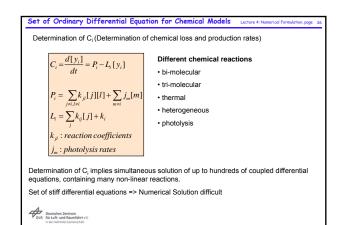






Photolysereaktion	Absorptionsquerschnitt	Quantenausbeute	Wellenlängen	
* $O_2 + hv \longrightarrow 2O(^7P)$	Minschwaner et al. (1992)	0A=1	175 - 240 mm	181
	Toshino et al. (1988)	-		
* $O_3 + hv \longrightarrow O(^7P) + O_2$	DeMore et al. (1994).	DeMore et al. (1994)	175 - 850 mm	10.2
	Paur und Bass (1985)			
* O ₃ + hv → O(⁷ D) + O ₂	DeMore et al. (1994)	a) DeMore et al. (1994)	175 - 320 nm	10)
	Paur und Bass (1985)	b) Ball et al. (1994)	175 - 325 nm	
		c) Michelsen et al. (1994)	175 - 325 mm	
* $H_2O + hv \rightarrow OH + H$	DeMore et al. (1994)	QA = 1 ⁻¹	175-189 nm	_
* $H_2O_2 + hv \rightarrow 2 OH$	DeMore et al. (1994)	QA = 1	190 - 350 nm	134
• $CH_2O + hv \longrightarrow HCO + H$	a) DeMore et al. (1994)	DeMore et al. (1994)	300 - 358 nm	B5
	b) Meller (1991)		225 - 376 nm	
 CH₂O + hv → CO + H₂ 	a) DeMore et al. (1994)	DeMore et al. (1994)	300 - 358 mm	135
	b) Meller (1991)		225 - 376 nm	
$CH_3CHO + hv \rightarrow CH_4 + CO$	Atkinson et al. (1992)	Atkinson et al. (1992)	200 - 295 nm	136
CH ₂ CHO + hv −→ CH ₂ + HCO	Atkinson et al. (1992)	Atkinson et al. (1992)	200 - 330 nm	136
* CH ₂ O ₂ H + hy → CH3 _O + Produkte	DeMore et al. (1994)	QA-1	210 - 360 nm	-
* CH ₂ O ₂ NO ₂ + hv → Produkte	Atkinson et al. (1992)	Atkinson et al. (1992)	200 - 325 nm	
* $NO + hv \longrightarrow N + O[^{2}P]$	Minschwaner und Stskind (1993)	Minschwarter and Stskind (1993)	181 - 192 mm	-87
* $NO_2 + hv \rightarrow NO + O(^{7}P)$	a) DeMore et al. (1994)	DeMore et al. (1994)	202 - 423 mm	38
	b) Schneider et al. (1987)			
* $NO_1 + hv \rightarrow NO + O_2$	Wayne et al. (1991)	Wayne et al. (1991)	584 - 641 nm	39
* $NO_5 + hv \rightarrow NO_2 + O(^3P)$	Wayne et al. (1991)	Wayne et al. (1991)	400 - 641 nm	185
* $N_2O + hv \rightarrow N_2 + O(^2D)$	DeMore et al. (1994)	QA-11	175 - 240 nm	131
* N ₂ O ₄ + hv → NO ₃ + Produkte	Jao et al. (1982) 1	QA = 1 *	200 - 380 nm	81
$HONO + hv \longrightarrow OH + NO$	Bongartz et al. (1991) ¹	QA = 1	300 - 399 nm	
* $HNO_3 + hv \rightarrow OH + NO_2$	Barkholder et al. (1993) 1	QA = 1	186 - 350 nm	191
* $HNO_4 + hv \rightarrow NO_2 + HO_2$	a) DeMore et al. (1994)	QA = 0.67 *	190 - 325 nm	81
	b) Singer et al. (1989)		190 - 329 nm	
$HNO_4 + hv \longrightarrow NO_3 + OH$	a) DeMore et al. (1994)	QA = 0.33 ¹	190 - 325 nm	111

		b) Singer et al. (1989)		190 - 329 nm
	 Cl₂+by → 2 Cl 	b) Singer et al. (1989) Maric et al. (1993) ³	OA = 1	199 - 529 nm 250 - 500 nm
=3.11 mbar,	$Cl0 + hv \rightarrow 2Cl$ $Cl0 + hv \rightarrow Cl + O(^{7}P)$	Simon et al. (1993) -	QA = 1	237 - 312 nm B14
	* OCIO + hv+ CIO + O(² P)	Wahner et al. (1987) ¹	QA-1 QA-1	242-473 nm B15
⁻ = 252.3 K.	$C(00 + hv \rightarrow C(0 + 0(^{-}P)))$	DeMore et al. (1987) *	QA = 1	242 - 473 nm B15 220 - 280 nm
	$Clot+hr \rightarrow Cl+O(-r)$ $Cl+O+hr \rightarrow Cl+ClO$	Simon (1987)	QA = 0.75 ¹	237 - 500 nm B16
hotolysis	CQ0+IN-+CI+CIO	DeMore et al. (1994)	QA-0.73	237 - 200 mm - 1810
requency for	$Cl_2O + hv \longrightarrow Cl_2 + O(^3P)$	Simon (1989)	QA = 0.25 ⁻¹	237 - 500 nm B16
requercy for		DeMore et al. (1994)		
ZA=60°.	* $ClOOC1 + hv \rightarrow C1 + ClOO$	DeMore et al. (1994)	QA - 1	190 - 450 nm
2/1-00 ,	* HOC1+hv → OH+C1	DeMore et al. (1994)	QA - 1	200-380 nm B17
=39,63 km.	* $HC1 + hv \longrightarrow H + C1$	DeMore et al. (1994)	QA - 1	175 – 220 nm
09,00 1411.	CIONO + hv+ CI + Produkte	DeMore et al. (1994)	QA = 1 ⁻¹	235 - 400 nm
	 CINO₂ + hv → Cl + Produkte 	DeMore et al. (1994)	QA = 1	190 - 370 nm
	* $CIONO_2 + hv \longrightarrow CI + NO_3$	a) Burkholder et al. (1994)	QA = 0.9 ⁻¹	196-432 nm B18
		b) DeMore et al. (1992)		
	$CIONO_2 + hv \longrightarrow O(^7P) + CION$		QA = 0.1 ³	196-432 nm B18
		b) DeMore et al. (1992)		
	CC1 _a + hv+ C1 + Produkte	DeMore et al. (1994)	QA - 1 1	175 – 275 nm
	CCl ₃ F + hv → Cl + Produkte	DeMore et al. (1994)	QA = 1 ⁻¹	175 – 260 nm
	* $BrCl + hv \rightarrow Br + Cl$	Maric et al. (1994)	QA = 1	200-600 nm B19
	$Br_2 + hv \longrightarrow 2 Br$	Maric et al. (1994)	QA = 1	200 - 650 nm B19
	$BrO + hv \longrightarrow Br + O(^{3}P)$	Wahner et al. (1988)	QA = 1	312 - 388 nm B20
	 BrONO₂ + hv → Produkte 	a) DeMore et al. (1994)	QA = 1	186 - 390 nm B21
		b) Deters et al. (1997)		209 - 509 nm
		c) Burkholder et al. (1995)		200 - 500 nm
	$Br_2O + hv \rightarrow Produkte$	a) Orlando and Barkholder (1995)	QA - 1	196-432 nm B22
		b) Deters et al. (1996)		208 – 444 nm
	$HOBr + hv \rightarrow Br + OH$	a) Orlando und Burkholder (1995)	QA - 1	245 - 395 nm B23
		b) Deters et al. (1996)		242 - 401 nm
		c) Rattigan et al. (1996)		240 - 510 mm
	HOBr _{lg} +hv → Produkte	Deters (1996)	QA = 1	243 - 387 nm
	$1O + hv \longrightarrow 1 + O(^{3}P)$	Himmelmann (1997)	QA - 1	373-480 nm B24
1.2		Harwood et al. (1997)		338 - 472 nm
A Deutsches Zentrum	OIO + hv> Produkte	Himmelmann (1997)	QA-1	480-667 nm B24


p =3.11 mbar,				k
T = 252.3 K.	$O_2 + hv$	\rightarrow	2.0	2.44(-10)
Photolysis	$O_3 + hv(\lambda < 325nm)$	\rightarrow	$O(^{1}D) + O_{2}$	9.46(-04)
frequency for	$O_1 + hv$	\rightarrow	$O(^{3}P) + O_{2}$	6.53(-04)
	$O(^{3}P) + O_{2} + M$	\rightarrow	$O_3 + M$	
SZA=60°,	$O(^{3}P) + O_{3}$	\rightarrow	2O ₂	2.28(-15)
h=39,63 km.	$O(^{1}D) + O_{2}$	\rightarrow	$O(^{3}P) + O_{2}$	4.22(-11)
	$O(^{1}D) + N_{2}$	\rightarrow	$O(^{3}P) + N_{2}$	2.78(-11)
	$O(^{1}D) + H_{2}O$	\rightarrow	2 OH	2.2(-10)
	$O(^{1}D) + H_{2}$	\rightarrow	OH+H	1.0(-10)
	$O(^{1}D) + CH_{4}$	\rightarrow	$OH + CH_3(*)$	1.5(-10)
	$H + O_2 + M$	\rightarrow	$HO_2 + M$	6.52(-15)
	$H+O_3$	\rightarrow	$OH + O_2$	2.17(-11)
	$H + HO_2$	\rightarrow	2 OH	7.3(-11)
	$H + HO_2$	\rightarrow	$H_2O + O(^{3}P)$	
	$H + HO_2$	\rightarrow	$H_2 + O_2$	
	$OH + O_3$	\rightarrow	$HO_2 + O_2$	
	$OH + HO_2$	\rightarrow	$H_2O + O_2$	
	$OH + H_2$	\rightarrow		1.99(-15)
	$OH + O(^{3}P)$	\rightarrow	$O_2 + H$	3.54(-11)

Recommended Set o	of Equation for	• Stratos	pheric Mode	lling	Lecture 4: Numerical Formulation, page	22
n - 2 11 mh an	OH+OH	\rightarrow	$H_2O + O(^{7}P)$	1.62(-12)		
p =3.11 mbar,	$HO_2 + O_3$	\rightarrow	$OH + O_2$	1.52(-15)		
T = 252.3 K.	$HO_2 + HO_2$	\rightarrow	$H_2O_2 + O_2$	2.48(-12)		
81 + 1 - :	$HO_2 + O(^3P)$	\rightarrow	$OH + O_2$	6.63(-11)		
Photolysis	$H_2O_2 + hv$	\rightarrow	2 OH	3.24(-05)		
frequency for	$H_2O_2 + OH$	\rightarrow	$H_2O + HO_2$	1.54(-12)		
	$H_2O_2 + O(^{3}P)$	\rightarrow	$OH + HO_2$	5.05(-16)		
SZA=60°,	$H_2O + hv$	\rightarrow	H+OH	2.18(-10)		
h=39,63 km.	OH+CO	\rightarrow	$CO_2 + H$	1.50(-13)		
11=39,03 km.	$OH + CH_4$	\rightarrow	$H_2O + CH_3(*)$	2.11(-15)		
	NO + hv	\rightarrow	$N + O(^{3}P)$	1.40(-07)		
	$N_2O + hv$	\rightarrow	$N_2 + O(^1D)$			
	$N_2O + O(^1D)$	\rightarrow	2 NO	6.7(-11)		
	$N_2O + O(^1D)$	\rightarrow	$N_2 + O_2$ NO + O(³ P)	4.9(-11)		
	$N + O_2$	\rightarrow		9.53(-18)		
	N+NO	\rightarrow	$N_2 + O(^3P)$ $N_2O + O(^3P)$	3.12(-11)		
	$N + NO_2$ NO + O ₁	\rightarrow	$N_2O + O(-P)$ NO ₂ + O ₂	1.39(-11) 7.78(-15)		
	NO + HO ₂	\rightarrow	NO ₂ + OH	9.97(-12)		
	$NO + NO_2$ $NO + NO_3$		2 NO2	2.94(-11)		
	$NO_2 + hv$	\rightarrow	$NO + O(^{2}P)$			
	$NO_2 + IIV$ $NO_2 + O_1$		NO1+0	7.28(-18)		
	$NO_2 + O_3^{(3)}P$	\rightarrow	NO+O2	1.05(-11)		
	$NO_2 + O(1)$ $NO_2 + OH + M$	\rightarrow	$HNO_3 + M$	3.56(-13)		
	$NO_2 + NO_1 + M$	\rightarrow	$N_2O_5 + M$			
	$N_2O_5 + M$	\rightarrow	$NO_2 + NO_1 + M$			
	$NO_2 + HO_2 + M$		HNO ₄ +M			
	$HNO_4 + M$		$NO_2 + HO_2 + M$			
Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Heimbolz-Gemeinschaft		-				

p =3.11 mbar,						
T = 252.3 K.						
Photolysis	$NO_3 + hv$	\rightarrow	$NO_2 + O(^3P)$	2.56(-01)		
'	$NO_3 + hv$	\rightarrow	$NO + O_2$	3.17(-02)		
frequency for	$NO_3 + OH$	\rightarrow	$HO_2 + NO_2$	2.2(-11)		
SZA=60°.	$NO_3 + HO_2$	\rightarrow	$OH + NO_2$	3.5(-12)		
5ZA=00,	$N_2O_5 + hv$	\rightarrow	$NO_2 + NO_3$	2.44(-04)		
h=39,63 km.	$HNO_3 + hv$	\rightarrow	$NO_2 + OH$	4.84(-05)		
	$HNO_3 + OH$	\rightarrow	$NO_3 + H_2O$	1.65(-13)		
	HNO ₄ + hv		$NO_2 + HO_2$	8.13(-05)		
	HNO ₄ +OH		$NO_2 + H_2O + O_2$	5.86(-12)		
	C1+O3	\rightarrow	$CIO + O_2$	1.04(-11)		
	$C1 + H_2$	\rightarrow	HC1+H	4.07(-15)		
	C1+HO ₂	\rightarrow	$HC1+O_2$	3.53(-11)		
	$C1 + HO_2$ $C1 + CH_4$	\rightarrow	CIO + OH	6.89(-12)		
		\rightarrow	HC1+CH ₃ (*)	4.28(-14)		
	CI+OCIO	\rightarrow	2 CIO	6.41(-11)		
	$Cl + Cl_2O_2$ Cl + HOCl	\rightarrow	$Cl_2 + Cl + O_2$ $Cl_2 + OH$	1.0(-10) 1.49(-12)		
	CI+CIONO ₂	\rightarrow	$Cl_2 + OH$ $Cl_2 + NO_1$	1.28(-11)		
	Cl2+hv		2 CI	3.88(-03)		
	$Cl_2 + 0H$	\rightarrow	HOC1+CI	3.95(-14)		
	CIO + O(³ P)	\rightarrow	C1+O2	3.96(-11)		
	00+0(1)		01+02	3.50(*11)		

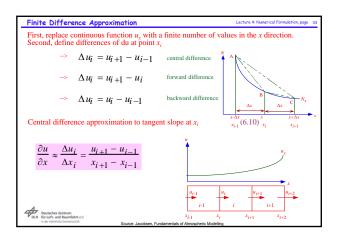
Recommended Set	of Equation for	Stratos	pheric Model	ing Lecture 4: Numerical Formulation, page
p =3.11 mbar,	CIO + OH	\rightarrow	$C1 + HO_2$	1.77(-11)
	$CIO + HO_2$	\rightarrow	$HOC1 + O_2$	7.7(-12)
T = 252.3 K.	CIO + NO	\rightarrow	$C1 + NO_2$	2.02(-11)
Dhatahusia	$CIO + NO_2 + M$	\rightarrow	CIONO2+M	2.74(-14)
Photolysis	CIO + CIO + M	\rightarrow	$Cl_2O_2 + M$	
frequency for	$Cl_2O_2 + M$	\rightarrow	CIO + CIO + M	
	$Cl_2O_2 + hv$	\rightarrow	C1+ClOO(*)	
SZA=60°,	OCIO + hv	\rightarrow	$CIO + O(^{3}P)$	1.30(-01)
h=39,63 km.	HOC1+hv	\rightarrow	C1+OH	
n=39,03 km.	HOC1+OH	\rightarrow	$CIO + H_2O$	4.14(-13)
	$HOC1 + O(^{3}P)$	\rightarrow	CIO + OH	5.78(-14)
	$CINO_2 + hv$	\rightarrow	$C1 + NO_2$	
	CIONO ₂ +hv	\rightarrow	$CI + NO_3$	2.14(-04)
	HC1+hv	\rightarrow	C1+H	2.22(-07)
	HC1+OH	\rightarrow	$C1 + H_2O$	6.49(-13)
	$Br + O_3$	\rightarrow	$BrO + O_2$	7.14(-13)
	$Br + HO_2$	\rightarrow	$HBr + O_2$	1.39(-12)
	$BrO + O(^{3}P)$	\rightarrow	$Br + O_2$	4.76(-11)
	$BrO + HO_2$	\rightarrow	$HOBr(*) + O_2$	4.5(-11)
	BrO+NO	\rightarrow	$Br + NO_2$	2.47(-11)
	$BrO + NO_2 + M$	\rightarrow	BrONO2+M	7.33(+14)
	BrO + CIO	\rightarrow	Br+OClO	8.8(-12)
	BrO+ClO	\rightarrow	$Br+Cl+O_2$	6.94(-12)
	BrO + CIO	\rightarrow	$BrC1 + O_2$	1.14(-12)
	BrO + BrO	\rightarrow	$Br + Br + O_2$	1.88(-12)
	HBr+OH	\rightarrow	$Br + H_2O$	1.1(-11)
	BrCl+hv	>	Br + Cl	1.57(-02)
1	BrONO ₂ + hv	>	$BrO + NO_2$	2.42(-03)
DLR Deutsches Zentrum für Luft- und Raumfahrt el/ in der Heimbolz-Gamenschaft				

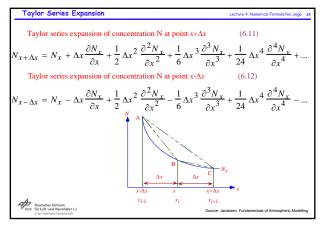
CH2O+hv		CO+H ₂	8.17(-05)
CH ₂ O + hy		HCO + H	6.53(-05)
$CH_{2}O + OH$		$H_2O + HCO$	1.0(-11)
CH20+C1	\rightarrow	HC1+HCO	7.19(-11)
CH ₂ O + Br	\rightarrow	HBr+HCO	
$HCO + O_2$	\rightarrow	CO + HO ₂	6.1(-12)
CH ₁ OH + OH	\rightarrow	H:O+CH:O+H	6.21(-13)
CH ₃ OH+Cl	\rightarrow	HCl+CH2O+H	5.4(-11)
$CH_3O_2 + HO_2$	\rightarrow	$CH_3O_2H+O_2$	9.05(-12)
$CH_3O_2 + NO$	\rightarrow	$CH_3O + NO_2$	8.57(-12)
$CH_1O + O_2$	\rightarrow	$CH_2O + HO_2$	1.10(-15)
$CH_3O_2 + NO_2 + M$	\rightarrow	$CH_1O_2NO_2 + M$	2.23(-13)
$CH_3O_2NO_2 + M$	\rightarrow	$CH_3O_2 + NO_2 + M$	9.04(-05)
CH3O2+CIO	\rightarrow	$C1 + CH_2O + HO_2$	1.33(-12)
$CH_3O_2 + CH_3O_2$	\rightarrow	$CH_2O + CH_3OH + O_2$	3.19(-13)
$CH_3O_2H + hv$	\rightarrow	$CH_2O + OH + H$	2.09(+05)
$CH_3O_2H + OH$	\rightarrow	$CH_3O_2 + H_2O$	
$CH_3O_2H + OH$	\rightarrow	$CH_2O + OH + H_2O$	2.52(-12)
$CH_3O_2H + CI$	\rightarrow	$HC1 + CH_2O + OH$	6.41(-11)
$CH_3O_2NO_2 + hv$	\rightarrow	$CH_3O_2 + NO_2$	1.05(-04)

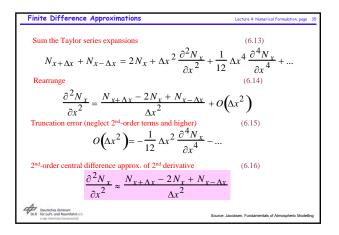
Ordinary differential equation (ODE) Equation with one independent variable		Ordinary Differential Equations	Partial Differential Equations
Partial differential equation (PDE) Equation with more than one independent variable		(a) $\frac{\mathrm{d}N}{\mathrm{d}t} = 16 - 4N^2$	(e) $\frac{\partial N}{\partial t} + \frac{\partial (uN)}{\partial x} = 0$
Order Highest derivative of an equation	First-order, first- degree	(b) $\frac{\mathrm{d}N}{\mathrm{d}t} = 3AB - 4NC$	(f) $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = 0$
Degree Highest polynomial value of the highest derivative	Second-order, first-degree Second-order,	(c) $\frac{\mathrm{d}^2 N}{\mathrm{d}t^2} + \frac{\mathrm{d}N}{\mathrm{d}t} + 5t = 0$	(g) $\frac{\partial^2 N}{\partial t^2} + \frac{\partial^2 N}{\partial x^2} = 3t^2 + x$ $\left(\frac{\partial^2 N}{\partial x} \right)^2 = \partial N$
Initial value problem Conditions are known at one end of domain but not other	second-degree	$(d) \left(\frac{d^2 t^2}{dt^2} \right) + \frac{d t^2}{dt} + 4 = 0$	(h) $\left(\frac{\partial H}{\partial t^2}\right) + \frac{\partial H}{\partial x} = t - x$
Boundary value problem Conditions are known at both ends of domain			

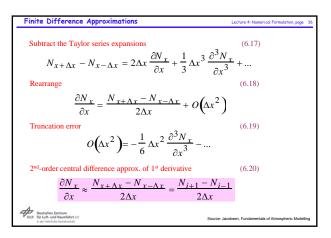
Operator Splitting Scheme	Lecture 4: Numerical Formulation, page 29
Major processes in an atmospheric model are often so Suppose a model has dynamics, transport, radiation Each of these processes may be solved sequentially	n and gas chemistry
Time step is an increment in time for a given process	
Time interval	
is the period during which several time steps of a p	process are solved
Example time step dynamics 15 min, transport 15 min, radia	
chemistry variable, time interval common to all is interval 3 dynamics and transport time steps are tal step, followed by a variable number of chemistry t interval, resulting wind speeds are taken as input f the transport interval gases are moved around in th chemistry calculations, and radiation.	ken, followed by 1 radiation time ime steps; after the dynamics time or transport calculations; during e grid; this is input for the
Time interval 1	Time interval 2
Dynamics, Transport	/ Dynamics, Transport
Radiation	Radiation
A Chemistry	Chemistry
Destsches Zentrum DLR für Luft- und Raumfahrt et/ in der Heitholtz-Geneenschaft Modified from Fig. 6.1	Source: Jacobsen, Fundamentals of Atmospheric Modelling

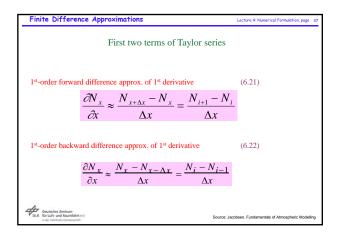
fferences	GCM	and	NWP	models	

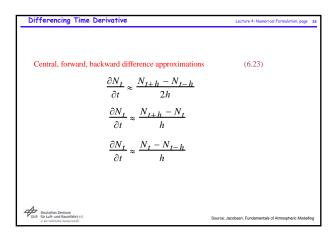

- Major difference between GCM and NWP model: climate model is used to project the average behaviour of the atmosphere (its climate) as a result of slow changes in some boundary conditions (such as the solar constant) or physical parameters (such as the greenhouse gas concentration) and not to make a deterministic prediction of the exact weather at a specific time.
- A chaotic nature of the fluid dynamics equations is involved in weather forecasting. Extremely small errors in temperature, winds, or other initial inputs given to numerical models will amplify and double every five days, making it impossible for long-range forecasts—those made more than two weeks in advance—to predict the state of the atmosphere with any degree of forecast skill. Furthermore, existing observation networks have poor coverage in some regions (e.g., over Pacific Ocean), which introduces uncertainty into the true initial state. .
- The unpredictable, chaotic nature of the atmosphere means that deterministic predictions are not possible. However, it is possible to predict changes in climate due to changes in boundary conditions, such as exchanges with the ocean or the land surface, or changes in external forcing factors, such as changes in solar radiation or GHGs. •
- NWP models are used to predict the weather in the **short (1-3 days)** and **medium (4-10 days)** range future. GCM's are run much longer, for years on end, long enough to learn about the **climate in a statistical sense** (i.e. trends, means and variability). •
- GCMs ignore fluctuating conditions when considering long-term changes, whereas NWP models take no notice of very slow processes.

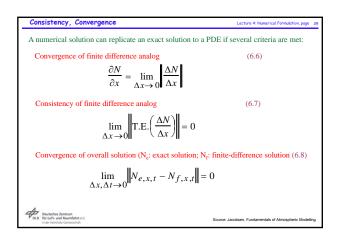

Di

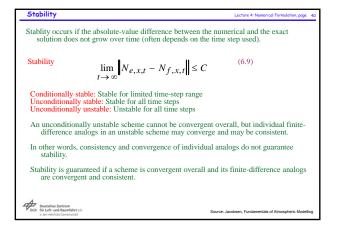

comparison between NWP mode	els and GCMs	Lecture 4: Numerical Formulation, pag	
contrasts	NWP	GCM	
goal	to predict weather	to predict climate	
spatial coverage	regional or global	global	
temporal range	days	years	
spatial resolution	variable (20-100 km)	usually coarse	
relevance of initial conditions	high	low	
relevance of clouds, radiation	low	high	
relevance of surface (land, ice, ocean)	low	high	
relevance of ocean dynamics	low high		
relevance of model stability	low	high	
similarities			
physics	equations of motion (plus radiative transfer equations, wate conservation equations)		
method	Finite difference expression of continuous equations, or spectr representation; run prognostically		

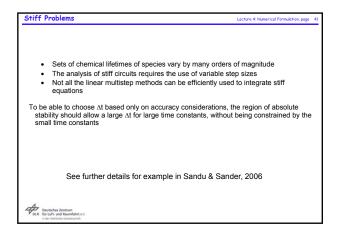

Methods to solve differential equations

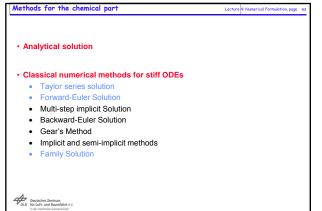

DLR Deutsches Zentrum für Luft- und Raumfahr in der Heimbolz-Gemeinsch

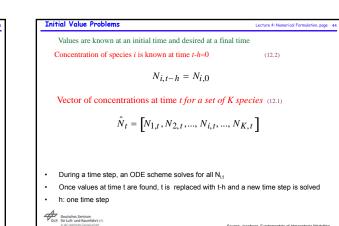


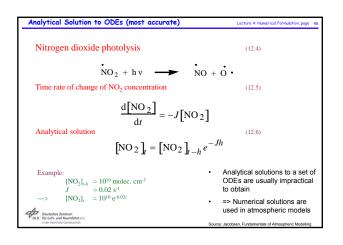


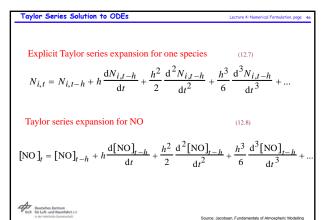


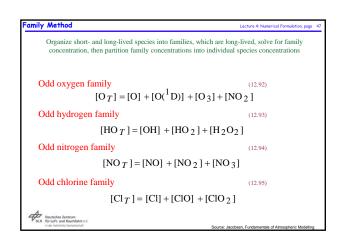


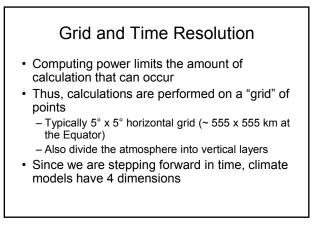


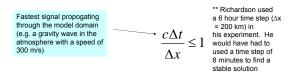




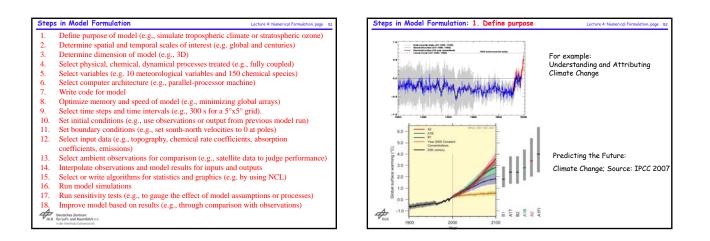


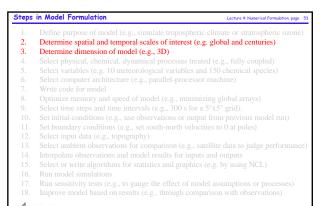

If the absolute-value difference between the numer solution does not grow with time	rical and the exact
ate	
Check time-dependent solution from the solver with	h an exact solution
conserving A scheme is mass-conserving if the mass of each o etc.) summed over all species at the beginning of t mass of the element summed over all species at th	the simulation equals th
<mark>ve definite</mark> If a scheme always predicts non-negative concentr	trations
A good solver can take long time-steps and mainta	ain accuracy
	solution does not grow with time ate Check time-dependent solution from the solver wit conserving A scheme is mass-conserving if the mass of each etc.) summed over all species at the beginning of i mass of the element summed over all species at the ve definite If a scheme always predicts non-negative concent

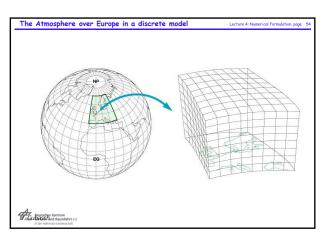


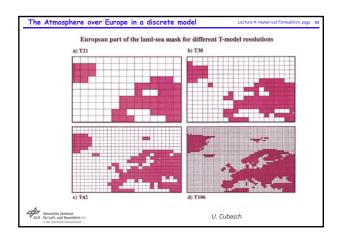


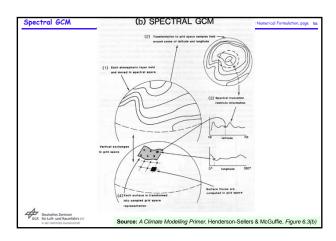


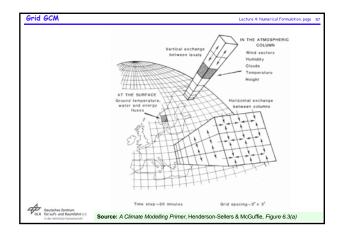


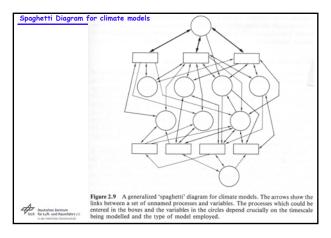

- As spatial resolution increases, the time resolution must also increase or climate models will not yield a stable solution (they will "blow up")
 - This is called the CFL criterion, named after Courant, Friedrichs, and Lewy, and is represented mathematically as:

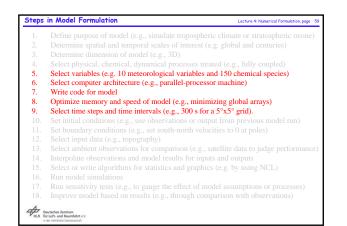


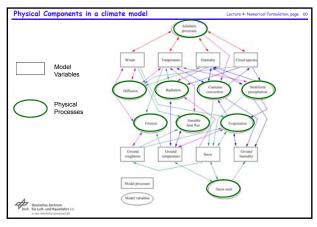

DLR Deutsches Zentrum für Luft- und Raumfahr

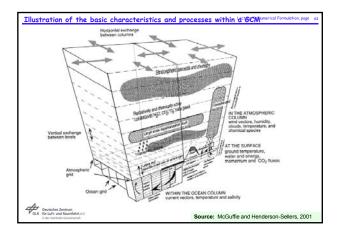


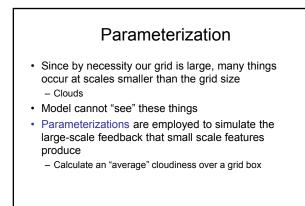


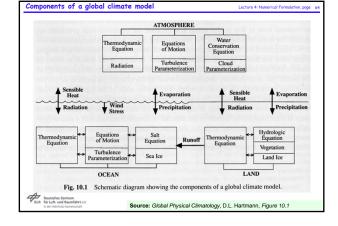


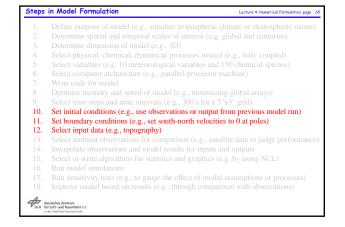






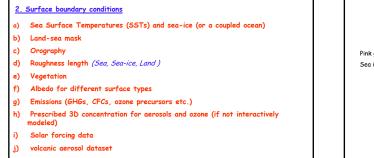






Typical Climate Model Parameterizations

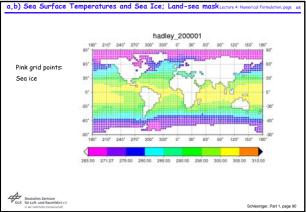
- · Convection and Clouds
 - Mass, momentum, heat, moisture fluxes
 Fluxes are usually much larger at scales smaller than a climate model grid size
 - Radiation interactions
- Turbulence
- Radiation
- Boundary Layer
 - Fluxes of heat, moisture, momentum


What do we need to start a GCM simulation? Lecture 4: Numerical Formulation, page 60 1. Initial Conditions 6

 Possible existence of multiple attractors make the choice of initial conditions far from trivial

> Possibilities for initial conditions:

- start from stable solution (e.g. an atmosphere without horizontal gradients)
 start close to an observed state (weather predictions, decadal simulations in CMIP5).
- Spinup: time until the simulations is independent from the initial conditions
 depends on the application
 - \succ short in the atmosphere due to the lack of inertia (few months)
 - processes at the land surface (in particular cumulative processes that depend on the storage of water below the ground) have a large inertia and need several years spinup
 - > even longer spinup is needed if the GCM runs with a coupled ocean


Deutsches Zentrum

Lecture 4: Numerical Formulation, page 67

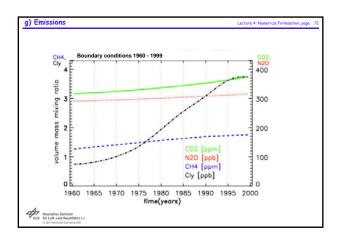
What do we need to start a GCM simulation?

Deutsches Zentrum DLR für Luft- und Raumf

c) Orography (2000) c) Orography (2000) (100

d) Roughness Length

The roughness length is used in numerical models to express the roughness of the surface. It affects the intensity of mechanical turbulence and the fluxes of varies quantities above the surface.


Lecture 4: Numerical Formulation, page 70

The 'roughness length' depends on the frontal area of the average element (facing the wind) divided by the ground width it occupies. Vertical sub-gridscale heat exchange (by turbulent eddies) can be expressed as the vertical gradient of potential temperature times the roughness length.

A lower roughness length implies less exchange between the surface and the atmosphere, but also stronger wind near the ground (e.g. at the standard height of 10 m). A terrain classification based on roughness length is given in the following table:

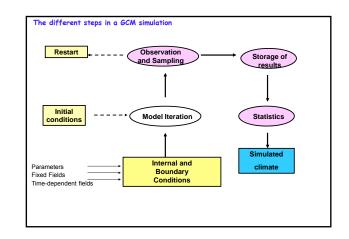
- 1	class		roughness	landscape features
1	no.	name.	length; m	
1	1	sea	0.0002	open water, tidal flat, snow with fetch above 3 km
Ĩ	2	smooth	0.005	featureless land, ice
[3	open	0.03	flat terrain with grass or very low vegetation, airport runway
1	4	roughly open	0.10	cultivated area, low crops, obstacles of height H separated by at least 20 H
ſ	5	rough	0.25	open landscape, scattered shelter belts, obstacles separated by 15 H or so
ſ	6	very rough	0.5	landscape with bushes, young dense forest etc separated by 10 H or so
.[7	closed	1.0	open spaces comparable with H, eg mature forest, low-rise built-up area
1	8	chaotie	over 2.0	irregular distribution of large elements, eg city centre, large forest with clearings

Surface type	Albedo (a
Soil, dark and wet	0.05
Soil, light and dry	0.40
Desert	0.20-0.45
Savanna grassland, wet season	0.18
Savanna grassland, dry season	0.23
Grass, long	0.16
Grass, short	0.26
Cropland	0.18-0.25
Orchards	0.15-0.20
Forest	0.05-0.20
Water, small zenith angle	0.03-0.10
Water, large zenith angle	0.10-1.00
Snow	0.40-0.95

Simulation design, preparation, integration, interpretation Lecture 4: Numerical Form ulation, page 73

Simulation design:

- Choice of model configuration, including model vertical and horizontal resolution and complexity
- > choice among the different subgrid scale parameterisations & parameters for it
- precise definition of the intial and boundary conditions that will be used for the experiment
- incorporate the material and personal constraints that can limit the scope of the simulation and try to find a reasonable balance between the scientific interest of the simulation and the overall costs and human and computer time. ۶


Preparation:

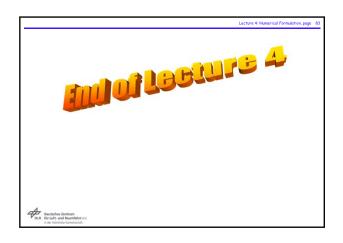
> prepare and check initial conditions and boundary conditions

Integration:

- start test runs (few months)
- > Start run and check regularly
- > Postprocess the output in order to bring out interesting results

Interpretation:

Short Description of t	he GCM ECHAM5 (1 of 8)	Lecture 4: Numerical Formulation, page 75
1.1 Short Desciption		
contains several changes, m simulations. The reference resolution is Long term integrations have	n developed from the ECMWF model (ostly in the parameterization, in order T42, but the model is set up to use re e so far only been done for T21, T30, T rom the original ECMWF model):	to adjust the model for climate solutions in the range T21 to T106.
1.2 Numerical solution		
 Prognostic variables: 	e.g., vorticity, divergence, temperatu water vapour, cloud species	ire, log surface pressure,
· Horizontal representation		
	spectral transform, triangular trunca applications the series expansion of s be truncated at some finite point.	
• Vertical representation:		
	hybrid coordinate system, second or and 69 layers	der finite differences, 19, 39,
 Time integration: 		
Deutsches Zentnum	semi-implicit leap frog with time fil t = 30min (T30), t = 24 min (T42), t = t = 12 min (T106)	
DLR für Luft- und Raumfahrt el/ in der Hehmholtz-Gemeinschaft		ECHAM5 user manual


	oundary conditions	
• SST and sea e.g. H	i- <mark>ice:</mark> Iadley data set	
• Orography:	mean terrain heights computed from high resolu	tion USGS GTOPO30 data set
• Land-sea ma	sk: from USGS GTOPO30 data set	
		. ,
	ion of grid area covered by vegetation based on rs (1985) data	Wilson and Henderson -
Albedo:		
Land: Sea i	<i>ice:</i> function of temperature (Robock,1980) <i>ice:</i> function of temperature (Robock, 1980; Kuk	
DLR Deutsches Zentrur für Luft- und Raun in der Heinholtz-Gene	n Baller e M. Seolal	ECHAM5 user manual

Short Description of th	e GCM ECHAM5 (3 of 8)	Lecture 4: Numerical Formulation, page 77
1.4 Physical parameteriz	ation	
Radiation: (Hense et al.,	1982; Rockel et al, 1991; Eickerlin	ng, 1989)
• two-stream approximati	on	
• six spectral intervals in	the terrestrial part	
• four spectral intervals i	n the solar part	
 gaseous absorbers: 	H_2O , CO_2 and O_3 (CO_2 and O_3 pres	scribed)
• aerosols:	prescribed	
 clouds: 	computed cloud optical depth and	cloud cover
 emissivity: 	function of cloud water path (Step	phens, 1978)
 continuum absorption: 	included	
 cloud overlap: 	maximum for contiguous clouds lay	ver and random otherwise
 diurnal cycle: 	included	
 radiation time step: 	2 hours	
Directions Zentrum DIR The Lath- und Reamfahre e.V. ner infehande Generated		ECHAM5 user monual

Short Description of the GCM ECHAM5 (4 of 8) Lecture 4: Numerical Formulation, page 7		
1.4 Physical parameterization		
Clouds: (Sundquist, 1978; Roeckne	r and Schlese, 1985; Roeck	ner et al, 1991)
Cloud water transport equation		
<i>Subgrid-scale condensation and clou</i> with different th Krueger, 1991)	<i>d formation</i> uresholds for convective and s	tratiform clouds (Xu and
Temperature dependent partitioning	of liquid/ice phase (Matveev,	, 1984)
Rain formation by auto-conversion	on of cloud droplets (Sundquis	it, 1978)
Sedimentation of ice crystals (Heym	sfeld, 1977)	
Evaporation of cloud water Evaporation of precipitation	See video on CLOUDS (El http://www.youtube.com/wa	
Deutsches Zentrum DLR für Luft- und Raumfahrt e.V.		ECHAM5 user manual

1.4 Physical parameterization		1.4 Physical parameterization
		Land-surface processes: (Sellers et al., 1986; Blondin, 1989; Du"menil and Todini, 199
Connvection	: (Tiedtke, 1989)	• Heat transfer: diffusion equation solved in a 5-layer model with zero heat flux at the
Mass flux so	cheme for deep, shallow and mid-level convection	bottom (10 m)
	are represented by a bulk model and include updraft and	Water budget equation for three reservoirs:
	downdraft mass fluxes	soil moisture, interception reservoir (vegetation), snow
Convective momentum transport		· Vegetation effects:
	is parameterized according to Schneider and Lindzen (1976)	stomatal control on evapotranspiration and interception of rain and snow
Evaporation of rain is parameterized according to Kessler (1969)		Run-off scheme: based on catchment considerations including sub-grid scale variations of
		field capacity over inhomogeneous terrain
Stratocumu	lus convection	····· ································
	is parameterized as a vertical diffusion process with enhanced	Sea-ice temperature
	eddy diffusion coefficients (Tiedtke et al., 1988)	calculated from surface energy budget
Deutsches Zen	trum auriliahrt e V ECHAM5 user manual	Devisiones Zentrum Disk für Luft- und Resmithert ev

