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An Introduction to Global Atmospheric Modelling

Lecture 4: Numerical Formulation in CCMs
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Oberpfaffenhofen

Content:

• Numerical Formulation in Atmospheric Chemistry Models

• Methods to Solve Differential Equations 

• Steps in Model Formulation
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• Lecture 1 (27 April): Introduction to Global Atmospheric Modelling

• Lecture 2 (04 May): Physical Climate Models & Fundamentals Atmospheric Radiation  

• Lecture 3 (11 May): Fundamentals: Chemistry

• Lecture 4 (18 May): Numerical Formulation in CCMs & Steps in Model Formulation

• Lecture 5 (25 May): Introduction into NCAR Command Language (NCL)

• Lecture 6 (1 June): NCL practice (Dr Mattia Righi) Doppelstunde

Preliminary schedule:

• Lecture 7 (8 June): moved to 1 June

• Lecture 8 (15 June): Fundamentals: Dynamics

• Lecture 9 (22 June): Model Evaluation and uncertainties in climate projections

• Lecture 10 (29 June): International climate modelling activities: Part 1

• Lecture 11 (6 July): EXAM

• Lecture 12 (13 July): International climate modelling activities: Part 2

• Lecture 13 (20 July): Summary 

Final Exam: 6 July 2012, 8:00-10:00

Outline
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11-year solar cycle and major volcanic eruptions

Sea surface temperatures

Gekoppelte Chemie-Klima Modelle (CCMs)

Volcanic and non-Volcanic Aerosol, 
Solar Cycle

Emissions of natural and 
anthropogenic gases

Concentrations of 
radiatively active gases

z.B. CO2 [ppm]

SRES B1
SRES A2
SRES A1B
RCP 8.5
RCP 4.5
RCP 2.5
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Lecture 4: Numerical Formulation, page 5Building a chemical model
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P: Chemical Production 

L: Chemical Loss
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Determination of Ci (Determination of chemical loss and production rates)
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Determination of Ci implies simultaneous solution of up to hundreds of coupled differential 
equations, containing many non-linear reactions.

Different chemical reactions

• bi-molecular

• tri-molecular

• thermal decay

• heterogeneous

• photolysis
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Lecture 4: Numerical Formulation, page 7Reaction Rate Coefficients

How do we determine the reaction rate coefficients?

Chemical Kinetics
The study of reaction rates (the change in reactant and product 

concentrations as a function of time).

Lecture 4: Numerical Formulation, page 8Factors that Effect Reaction Rates

Reaction Rate    Concentration

A. Concentration –As concentration increases, the reaction rate 
increases.

B. Physical State of Reactants – Reactants must mix and collide 
in order to react.

C. Temperature – As temperature increases, the reaction rate 
increases.

Reaction Rate    Temperature

D. Catalyst – A substance that increases the rate of a 
reaction without being consumed in the process.

Lecture 4: Numerical Formulation, page 9The Differential Rate Law

How does the rate of the reaction depend on concentration? E.g.

3A  + 2B  C + D
rate = k [A]m[B]n

(Specific 
reaction) 

rate 
constant

Order of 
reaction 

with 
respect to 

A

Order of 
reaction 

with 
respect to 

B

m+n: 
Overall 
order of 

the 
reaction

Each reaction is characterized by its own rate constant, depending on the nature 
of the reactants and the temperature
In general, the order with respect to each reagent must be found experimentally
(not necessarily equal to soichiometric coefficienct)

Lecture 4: Numerical Formulation, page 10Elementary Processes and Rate Laws

Reaction mechanism: 

The collection of elementary processes by which an overall reaction occurs
The order of an elementary process is predictable

Third
order

Second
order

First
order

Termolecular

Bimolecular

Unimolecular

k [A] [B]A  + B  C + D

k [A] [B] [C]A  + B  + C  D + E

k [A]A*  B

Lecture 4: Numerical Formulation, page 11Chemical Kinetics 

A reaction
A + B -> products

proceeds at a rate proportional to the concentrations raised to some power

• k is the rate coefficient (rate constant). The powers a and b are the 
order of the reaction with respect to the reactants i.e. 

A + B -> products

• If  for example a=b=1 then the reaction is called a second order 

reaction  (+=2) .

 ][][
][][

  BAk
dt

Bd

dt

Ad
Rate 

Lecture 4: Numerical Formulation, page 12Chemical Kinetics: Bimolecular Reactions

A reaction
A + B -> C + D

proceeds at a rate proportional to the concentrations raised to some power

• k is the rate coefficient (rate constant). 

• kb can be calculated by Arrhenius Law: the rate of a chemical reaction 
increases exponentially with the absolute temperature.
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Lecture 4: Numerical Formulation, page 13Microscopic View of Reaction Rates

B. Arrhenius Equation

RT
Ea

Aek


  constant  rate

Fraction of molecules with 
sufficient energy

Frequency factor

• Summarizes the tenets of collision theory into an 
equation that can be used to calculate the rate constant 
for a reaction.

R = 8.315 x 10-3 kJ/K•mol

T = temperature (K)

Lecture 4: Numerical Formulation, page 14

• Ea can be determined by finding k for a reaction 
experimentally at several temperatures.

   b   mx            y                                                       
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Take ln and rearrange

Slope = -Ea/R

Microscopic View of Reaction Rates

B. Arrhenius Equation

Lecture 4: Numerical Formulation, page 15Chemical Kinetics: Tri-molecular Reactions

A reaction
A + B + M -> C + M

proceeds at a rate proportional to the concentrations raised to some power

]][[
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 BAk
dt

Ad
t

High pressure case

Low pressure case

Fit between low and high pressure case

JPL catalogue:  k0, n, k    , m

Determination of k0 and k     in the lab at T=300K




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A reaction het
A + B  -> C + D
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On liquid surfaces

On solid surfaces

mTkb  /8

A: surface

uptake coefficient

)4/(31
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
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[A]: concentration

la : mean free path length

r: radius

 sticking coefficient (reaction probability)

Reactions that occur at the 
interface between condensed and 
gaseous phases, i.e. the surface

In liquids, the reactions tend to be 
inside the particle. 

In solids, the diffusion from the 
surface is extremely small, and the 
reactions are confined to the 
surface.
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A + h -> C + D

Example:

Time Dependence for A (J is the photolysis frequency [s-1]):

First order reaction

Lecture 4: Numerical Formulation, page 18Photolysis Reaction Rates

A concentration rate of 
change due to 
photolysis reaction i

Species A undergoes photodissociation.

Reaction i: A + h  products

 dET
dt

d
i

i

),(),,()(]A[
]A[

X
 reac



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A absorption 
cross section

Reaction i
quantum yield

Spectral 
actinic flux

Wavelength

Action spectrum

Reaction rate coefficient j
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Lecture 4: Numerical Formulation, page 19Recommended Set of Equation for Stratospheric Modelling Lecture 4: Numerical Formulation, page 20Recommended Set of Equation for Stratospheric Modelling

p =3.11 mbar, 
T = 252.3 K. 
Photolysis 
frequency for 
SZA=60°, 
h=39,63 km.

Lecture 4: Numerical Formulation, page 21Recommended Set of Equation for Stratospheric Modelling

p =3.11 mbar, 
T = 252.3 K. 
Photolysis 
frequency for 
SZA=60°, 
h=39,63 km.

Lecture 4: Numerical Formulation, page 22Recommended Set of Equation for Stratospheric Modelling

p =3.11 mbar, 
T = 252.3 K. 
Photolysis 
frequency for 
SZA=60°, 
h=39,63 km.

Lecture 4: Numerical Formulation, page 23Recommended Set of Equation for Stratospheric Modelling

p =3.11 mbar, 
T = 252.3 K. 
Photolysis 
frequency for 
SZA=60°, 
h=39,63 km.

Lecture 4: Numerical Formulation, page 24Recommended Set of Equation for Stratospheric Modelling

p =3.11 mbar, 
T = 252.3 K. 
Photolysis 
frequency for 
SZA=60°, 
h=39,63 km.
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Lecture 4: Numerical Formulation, page 25

p =3.11 mbar, T = 252.3 K. Photolysis frequency for SZA=60°, h=39,63 km.

Recommended Set of Equation for Stratospheric Modelling Lecture 4: Numerical Formulation, page 26Set of Ordinary Differential Equation for Chemical Models

Determination of Ci (Determination of chemical loss and production rates)
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Determination of Ci implies simultaneous solution of up to hundreds of coupled differential 
equations, containing many non-linear reactions.

Set of stiff differential equations => Numerical Solution difficult 

Different chemical reactions

• bi-molecular

• tri-molecular

• thermal

• heterogeneous

• photolysis
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Ordinary differential equation (ODE)
Equation with one independent variable

ODEs and PDEs

Partial differential equation (PDE)
Equation with more than one independent variable

Order
Highest derivative of an equation

Degree
Highest polynomial value of the highest derivative

Initial value problem
Conditions are known at one end of domain but not other

Boundary value problem
Conditions are known at both ends of domain

Lecture 4: Numerical Formulation, page 28ODEs and PDEs

Source: Jacobsen, Fundamentals of Atmospheric Modelling

Ordinary D ifferential
Equations

Partial D ifferential
Equations

First-order, first-

degree
(a) 

dN
d t

 16  4N 2 (e) 
N

 t

 uN 
x

 0

First-order, first-

degree
(b) 

dN
dt

 3AB  4NC (f) 
u
t

 u
u
x

 v
u
y

 0

Second-order,

first-degree
(c) 

d2 N

d t2
 dN

d t
 5t  0 (g) 

2 N
 t2


2 N
x 2

 3t2  x

Second-order,

second-degree
(d) 

d 2 N

dt2



 




2

 dN

d t
 4  0 (h) 

 2 N

 t2



 




2


N
x

 t  x
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Modified from Fig. 6.1

Dynamics, Transport

Radiation

Chemistry

Time interval 1

Dynamics, Transport

Radiation

Chemistry

Time interval 2

Major processes in an atmospheric model are often solved separately from each other
Suppose a model has dynamics, transport, radiation and gas chemistry
Each of these processes may be solved sequentially during a common time interval

Time step
is an increment in time for a given process

Time interval
is the period during which several time steps of a process are solved

Example
time step dynamics 15 min, transport 15 min, radiation 45 min (every 3 time steps), 
chemistry variable, time interval common to all is 45 min => during the time 
interval 3 dynamics and transport time steps are taken, followed by 1 radiation time 
step, followed by a variable number of chemistry time steps; after the dynamics time 
interval, resulting wind speeds are taken as input for transport calculations; during 
the transport interval gases are moved around in the grid; this is input for the 
chemistry calculations, and radiation.

Source: Jacobsen, Fundamentals of Atmospheric Modelling

Lecture 4: Numerical Formulation, page 30Differences GCM and NWP models

• Major difference between GCM and NWP model: climate model is used to project the
average behaviour of the atmosphere (its climate) as a result of slow changes in some
boundary conditions (such as the solar constant) or physical parameters (such as the
greenhouse gas concentration) and not to make a deterministic prediction of the exact
weather at a specific time.

• A chaotic nature of the fluid dynamics equations is involved in weather forecasting. Extremely
small errors in temperature, winds, or other initial inputs given to numerical models will
amplify and double every five days, making it impossible for long-range forecasts—those made
more than two weeks in advance—to predict the state of the atmosphere with any degree of
forecast skill. Furthermore, existing observation networks have poor coverage in some regions
(e.g., over Pacific Ocean), which introduces uncertainty into the true initial state.

• The unpredictable, chaotic nature of the atmosphere means that deterministic predictions
are not possible. However, it is possible to predict changes in climate due to changes in
boundary conditions, such as exchanges with the ocean or the land surface, or changes in
external forcing factors, such as changes in solar radiation or GHGs.

• NWP models are used to predict the weather in the short (1-3 days) and medium (4-10
days) range future. GCM's are run much longer, for years on end, long enough to learn about
the climate in a statistical sense (i.e. trends, means and variability).

• GCMs ignore fluctuating conditions when considering long-term changes, whereas NWP
models take no notice of very slow processes.
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Lecture 4: Numerical Formulation, page 31A comparison between NWP models and GCMs

contrasts NWP GCM

goal to predict weather to predict climate

spatial coverage regional or global global

temporal range days years

spatial resolution variable (20-100 km) usually coarse

relevance of initial conditions high low

relevance of clouds, radiation low high

relevance of surface (land, ice, ocean...) low high

relevance of ocean dynamics low high

relevance of model stability low high

similarities

physics equations of motion (plus radiative transfer equations, water 

conservation equations ..)

method Finite difference expression of continuous equations, or spectral 

representation; run prognostically

Lecture 4: Numerical Formulation, page 32

Lecture 4: Numerical Formulation, page 33Finite Difference Approximation

First, replace continuous function ux with a finite number of values in the x direction.
Second, define differences of du at point xi

-->

-->

-->

ui  ui 1  ui1

ui  ui 1  ui

ui  ui  ui 1 backward difference

forward difference

central difference

Central difference approximation to tangent slope at xi (6.10)

u

x

ui
xi


ui 1  ui1
xi 1  xi1

ux

u

x

i-1                   i                   i+1

ui-1                  ui                   ui+1             ui+2

xi-1                  xi                  xi+1            xi+2
Source: Jacobsen, Fundamentals of Atmospheric Modelling

Nx

N

x

xi-1                  xi                   xi+1

A

B

C

x-x                 x                x+x

x x
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Taylor series expansion of concentration N at point x+x (6.11)

Taylor Series Expansion

Taylor series expansion of concentration N at point x-x (6.12)

Nx x  Nx  x
Nx
x


1

2
x2  2N x

x 2 
1

6
x 3 3 Nx

x3 
1

24
x4  4N x

x4  ...

Nx x  Nx  x
Nx
x


1

2
x2  2N x

x2 
1

6
x3 3N x

x3 
1

24
x4  4Nx

x4  ...

Nx

N

x

xi-1                  xi                   xi+1

A

B

C

x-x                 x                x+x

x x

Source: Jacobsen, Fundamentals of Atmospheric Modelling
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Sum the Taylor series expansions (6.13)

Finite Difference Approximations

Rearrange (6.14)

Truncation error (neglect 2nd-order terms and higher) (6.15)

2nd-order central difference approx. of 2nd derivative (6.16)

Nxx  Nxx  2 Nx  x 2 2N x

x 2 
1

12
x4  4N x

x 4  ...

 2N x

x2 
N xx  2 Nx  Nxx

x2 O x2 

O x2  
1

12
x2  4N x

x4  ...

 2N x

x2 
Nxx  2 Nx  Nxx

x2

Source: Jacobsen, Fundamentals of Atmospheric Modelling
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Subtract the Taylor series expansions (6.17)

Finite Difference Approximations

Rearrange (6.18)

Truncation error (6.19)

2nd-order central difference approx. of 1st derivative (6.20)

Nxx  Nxx  2x
N x
x


1

3
x3 3N x

x3  ...

N x
x


N xx  N xx

2x
 O x2 

O x2  
1

6
x2 3N x

x3  ...

N x
x


Nx x  N xx

2x


Ni1  Ni1
2x

Source: Jacobsen, Fundamentals of Atmospheric Modelling
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Lecture 4: Numerical Formulation, page 37Finite Difference Approximations

1st-order backward difference approx. of 1st derivative (6.22)

First two terms of Taylor series

1st-order forward difference approx. of 1st derivative (6.21)

x

NN

x

NN

x

N iixxxx








  1




N x
x


Nx  Nxx

x


Ni  Ni1
x

Source: Jacobsen, Fundamentals of Atmospheric Modelling

Lecture 4: Numerical Formulation, page 38Differencing Time Derivative

Central, forward, backward difference approximations (6.23)

Nt
t


Nt h  Nt h

2h

Nt
t


Nt h  Nt

h

Nt
t


Nt  Nt h

h

Source: Jacobsen, Fundamentals of Atmospheric Modelling

Lecture 4: Numerical Formulation, page 39

Convergence of finite difference analog (6.6)

Consistency, Convergence

Consistency of finite difference analog (6.7)

Convergence of overall solution (Ne: exact solution; Nf: finite-difference solution (6.8)

N

x
 lim
x 0

N

x

lim
x0

T.E.
N

x


 


  0

lim
x, t0

Ne,x, t  N f ,x ,t  0

Source: Jacobsen, Fundamentals of Atmospheric Modelling

A numerical solution can replicate an exact solution to a PDE if several criteria are met:

Lecture 4: Numerical Formulation, page 40Stability

Stability (6.9)
lim

t
Ne,x,t  N f ,x, t  C

Conditionally stable: Stable for limited time-step range
Unconditionally stable: Stable for all time steps
Unconditionally unstable: Unstable for all time steps

An unconditionally unstable scheme cannot be convergent overall, but individual finite-
difference analogs in an unstable scheme may converge and may be consistent.

In other words, consistency and convergence of individual analogs do not guarantee 
stability.

Stability is guaranteed if a scheme is convergent overall and its finite-difference analogs 
are convergent and consistent.

Source: Jacobsen, Fundamentals of Atmospheric Modelling

Stablity occurs if the absolute-value difference between the numerical and the exact 
solution does not grow over time (often depends on the time step used).

Lecture 4: Numerical Formulation, page 41Stiff Problems

 Sets of chemical lifetimes of species vary by many orders of magnitude
 The analysis of stiff circuits requires the use of variable step sizes
 Not all the linear multistep methods can be efficiently used to integrate stiff 

equations

To be able to choose t based only on accuracy considerations, the region of absolute 
stability should allow a large t for large time constants, without being constrained by the 
small time constants  

See further details for example in Sandu & Sander, 2006

Lecture 4: Numerical Formulation, page 42Properties of ODE Solver

Stable
If the absolute-value difference between the numerical and the exact 
solution does not grow with time

Accurate
Check time-dependent solution from the solver with an exact solution

Mass-conserving
A scheme is mass-conserving if the mass of each element (e.g. N, O, H, 
etc.) summed over all species at the beginning of the simulation equals the 
mass of the element summed over all species at the end of the simulation

Positive definite
If a scheme always predicts non-negative concentrations

Fast
A good solver can take long time-steps and maintain accuracy
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Lecture 4: Numerical Formulation, page 43Methods for the chemical part

• Analytical solution

• Classical numerical methods for stiff ODEs

 Taylor series solution

 Forward-Euler Solution

 Multi-step implicit Solution

 Backward-Euler Solution

 Gear’s Method

 Implicit and semi-implicit methods

 Family Solution

Lecture 4: Numerical Formulation, page 44Initial Value Problems

Vector of concentrations at time t for a set of K species (12.1)

Concentration of species i is known at time t-h=0 (12.2)

ˆ N t  N1,t , N2, t , ..., Ni, t, ..., NK, t 

Ni, t h  Ni ,0

Values are known at an initial time and desired at a final time

• During a time step, an ODE scheme solves for all Ni,t

• Once values at time t are found, t is  replaced with t-h and a new time step is solved 

• h: one time step

Source: Jacobsen, Fundamentals of Atmospheric Modelling

Lecture 4: Numerical Formulation, page 45Analytical Solution to ODEs (most accurate)

Nitrogen dioxide photolysis (12.4)

Time rate of change of NO2 concentration (12.5)

Analytical solution (12.6)

Example:
[NO2]t-h = 1010 molec. cm-3

J = 0.02 s-1

--->   [NO2]t = 1010 e-0.02t

NO 2  +  h  NO  +  O

d NO 2 
dt

 J NO 2 

NO 2 t  NO2 t h e Jh

• Analytical solutions to a set of 
ODEs are usually impractical 
to obtain

• => Numerical solutions are 
used in atmospheric models

Source: Jacobsen, Fundamentals of Atmospheric Modelling

Lecture 4: Numerical Formulation, page 46Taylor Series Solution to ODEs

Taylor series expansion for NO (12.8)

Explicit Taylor series expansion for one species (12.7)

Ni, t  Ni, t h  h
dNi ,t h

dt


h2

2

d 2Ni ,t h

dt2


h3

6

d3Ni ,t h

dt 3  ...

NO t  NO t h  h
d NO t h

dt


h2

2

d 2 NO t  h

dt2


h3

6

d3 NO t h

dt 3  ...

Source: Jacobsen, Fundamentals of Atmospheric Modelling
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Organize short- and long-lived species into families, which are long-lived, solve for family 
concentration, then partition family concentrations into individual species concentrations

Odd chlorine family (12.95)

Odd hydrogen family (12.93)

Odd nitrogen family (12.94)

Odd oxygen family (12.92)

[O T ]  [O]  [O(1D)]  [O 3]  [NO 2 ]

[HO T ]  [OH]  [HO 2 ]  [H 2O2 ]

[NO T ]  [NO]  [NO 2 ]  [NO 3]

[Cl T ]  [Cl]  [ClO]  [ClO 2 ]

Source: Jacobsen, Fundamentals of Atmospheric Modelling

Grid and Time Resolution

• Computing power limits the amount of 
calculation that can occur

• Thus, calculations are performed on a “grid” of 
points
– Typically 5° x 5° horizontal grid (~ 555 x 555 km at 

the Equator)
– Also divide the atmosphere into vertical layers

• Since we are stepping forward in time, climate 
models have 4 dimensions
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Model Stability

• As spatial resolution increases, the time resolution 
must also increase or climate models will not yield 
a stable solution (they will “blow up”)
– This is called the CFL criterion, named after Courant, 

Friedrichs, and Lewy, and is represented mathematically 
as:

1


x

tc
Fastest signal propogating
through the model domain
(e.g. a gravity wave in the
atmosphere with a speed of
300 m/s)

** Richardson used
a 6 hour time step (∆x
= 200 km) in

his experiment.  He 
would have had to 
used a time step of 
8 minutes to find a 
stable solution

Lecture 4: Numerical Formulation, page 50

Lecture 4: Numerical Formulation, page 51Steps in Model Formulation

1. Define purpose of model (e.g., simulate tropospheric climate or stratospheric ozone)
2. Determine spatial and temporal scales of interest (e.g. global and centuries)
3. Determine dimension of model (e.g., 3D)
4. Select physical, chemical, dynamical processes treated (e.g., fully coupled)
5. Select variables (e.g. 10 meteorological variables and 150 chemical species)
6. Select computer architecture (e.g., parallel-processor machine) 
7. Write code for model
8. Optimize memory and speed of model (e.g., minimizing global arrays)
9. Select time steps and time intervals (e.g., 300 s for a 5°x5° grid).
10. Set initial conditions (e.g., use observations or output from previous model run)
11. Set boundary conditions (e.g., set south-north velocities to 0 at poles)
12. Select input data (e.g., topography, chemical rate coefficients, absorption 

coefficients, emissions)
13. Select ambient observations for comparison (e.g., satellite data to judge performance)
14. Interpolate observations and model results for inputs and outputs 
15. Select or write algorithms for statistics and graphics (e.g. by using NCL)
16. Run model simulations 
17. Run sensitivity tests (e.g., to gauge the effect of model assumptions or processes)
18. Improve model based on results (e.g., through comparison with observations)

Lecture 4: Numerical Formulation, page 52Steps in Model Formulation: 1. Define purpose

For example:
Understanding and Attributing 
Climate Change

Predicting the Future:

Climate Change; Source: IPCC 2007

Lecture 4: Numerical Formulation, page 53Steps in Model Formulation

1. Define purpose of model (e.g., simulate tropospheric climate or stratospheric ozone)
2. Determine spatial and temporal scales of interest (e.g. global and centuries)
3. Determine dimension of model (e.g., 3D)
4. Select physical, chemical, dynamical processes treated (e.g., fully coupled)
5. Select variables (e.g. 10 meteorological variables and 150 chemical species)
6. Select computer architecture (e.g., parallel-processor machine) 
7. Write code for model
8. Optimize memory and speed of model (e.g., minimizing global arrays)
9. Select time steps and time intervals (e.g., 300 s for a 5°x5° grid).
10. Set initial conditions (e.g., use observations or output from previous model run)
11. Set boundary conditions (e.g., set south-north velocities to 0 at poles)
12. Select input data (e.g., topography)
13. Select ambient observations for comparison (e.g., satellite data to judge performance)
14. Interpolate observations and model results for inputs and outputs 
15. Select or write algorithms for statistics and graphics (e.g. by using NCL)
16. Run model simulations 
17. Run sensitivity tests (e.g., to gauge the effect of model assumptions or processes)
18. Improve model based on results (e.g., through comparison with observations)

Lecture 4: Numerical Formulation, page 54

U. Cubasch

The Atmosphere over Europe in a discrete model
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Lecture 4: Numerical Formulation, page 55

U. Cubasch

The Atmosphere over Europe in a discrete model Lecture 4: Numerical Formulation, page 56

Source: A Climate Modelling Primer, Henderson-Sellers & McGuffie, Figure 6.3(b)

Spectral GCM

Lecture 4: Numerical Formulation, page 57

Source: A Climate Modelling Primer, Henderson-Sellers & McGuffie, Figure 6.3(a)

Grid GCM Lecture 4: Numerical Formulation, page 58Spaghetti Diagram for climate models

Lecture 4: Numerical Formulation, page 59Steps in Model Formulation

1. Define purpose of model (e.g., simulate tropospheric climate or stratospheric ozone)
2. Determine spatial and temporal scales of interest (e.g. global and centuries)
3. Determine dimension of model (e.g., 3D)
4. Select physical, chemical, dynamical processes treated (e.g., fully coupled)
5. Select variables (e.g. 10 meteorological variables and 150 chemical species)
6. Select computer architecture (e.g., parallel-processor machine) 
7. Write code for model
8. Optimize memory and speed of model (e.g., minimizing global arrays)
9. Select time steps and time intervals (e.g., 300 s for a 5°x5° grid).
10. Set initial conditions (e.g., use observations or output from previous model run)
11. Set boundary conditions (e.g., set south-north velocities to 0 at poles)
12. Select input data (e.g., topography)
13. Select ambient observations for comparison (e.g., satellite data to judge performance)
14. Interpolate observations and model results for inputs and outputs 
15. Select or write algorithms for statistics and graphics (e.g. by using NCL)
16. Run model simulations 
17. Run sensitivity tests (e.g., to gauge the effect of model assumptions or processes)
18. Improve model based on results (e.g., through comparison with observations)

Lecture 4: Numerical Formulation, page 60Physical Components in a climate model

Physical 
Processes

Model 
Variables



11

Lecture 4: Numerical Formulation, page 61Illustration of the basic characteristics and processes within a GCM

Source: McGuffie and Henderson-Sellers, 2001

Parameterization

• Since by necessity our grid is large, many things 
occur at scales smaller than the grid size
– Clouds

• Model cannot “see” these things

• Parameterizations are employed to simulate the 
large-scale feedback that small scale features 
produce
– Calculate an “average” cloudiness over a grid box

Typical Climate Model 
Parameterizations

• Convection and Clouds
– Mass, momentum, heat, moisture fluxes
– Fluxes are usually much larger at scales smaller 

than a climate model grid size
– Radiation interactions

• Turbulence
• Radiation
• Boundary Layer

– Fluxes of heat, moisture, momentum

Lecture 4: Numerical Formulation, page 64Components of a global climate model

Source: Global Physical Climatology, D.L. Hartmann, Figure 10.1

Lecture 4: Numerical Formulation, page 65Steps in Model Formulation

1. Define purpose of model (e.g., simulate tropospheric climate or stratospheric ozone)
2. Determine spatial and temporal scales of interest (e.g. global and centuries)
3. Determine dimension of model (e.g., 3D)
4. Select physical, chemical, dynamical processes treated (e.g., fully coupled)
5. Select variables (e.g. 10 meteorological variables and 150 chemical species)
6. Select computer architecture (e.g., parallel-processor machine) 
7. Write code for model
8. Optimize memory and speed of model (e.g., minimizing global arrays)
9. Select time steps and time intervals (e.g., 300 s for a 5°x5° grid).
10. Set initial conditions (e.g., use observations or output from previous model run)
11. Set boundary conditions (e.g., set south-north velocities to 0 at poles)
12. Select input data (e.g., topography)
13. Select ambient observations for comparison (e.g., satellite data to judge performance)
14. Interpolate observations and model results for inputs and outputs 
15. Select or write algorithms for statistics and graphics (e.g. by using NCL)
16. Run model simulations 
17. Run sensitivity tests (e.g., to gauge the effect of model assumptions or processes)
18. Improve model based on results (e.g., through comparison with observations)

Lecture 4: Numerical Formulation, page 66What do we need to start a GCM simulation?

1. Initial Conditions

 Possible existence of multiple attractors make the choice of initial 
conditions far from trivial

 Possibilities for initial conditions:

 start from stable solution (e.g. an atmosphere without horizontal gradients)

 start close to an observed state (weather predictions, decadal simulations in 
CMIP5).

 Spinup: time until the simulations is independent from the initial conditions
 depends on the application

 short in the atmosphere due to the lack of inertia (few months)

 processes at the land surface (in particular cumulative processes that depend on 
the storage of water below the ground) have a large inertia and need several 
years spinup

 even longer spinup is needed if the GCM runs with a coupled ocean
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Lecture 4: Numerical Formulation, page 67What do we need to start a GCM simulation?

2. Surface boundary conditions

a) Sea Surface Temperatures (SSTs) and sea-ice (or a coupled ocean)

b) Land-sea mask 

c) Orography 

d) Roughness length (Sea, Sea-ice, Land )
e) Vegetation

f) Albedo for different surface types

g) Emissions (GHGs, CFCs, ozone precursors etc.)

h) Prescribed 3D concentration for aerosols and ozone (if not interactively 
modeled)

i) Solar forcing data 

j) volcanic aerosol dataset 

Lecture 4: Numerical Formulation, page 68a,b) Sea Surface Temperatures and Sea Ice; Land-sea mask

Schlesinger, Part 1, page 90

Pink grid points:

Sea ice 

Lecture 4: Numerical Formulation, page 69c) Orography  

Andes only poorly resolved
Alps not really visible

Source: A. Brown 

Lecture 4: Numerical Formulation, page 70d) Roughness Length

The roughness length is used in numerical models to express the roughness of the surface. 
It affects the intensity of mechanical turbulence and the fluxes of varies quantities above 
the surface. 

The 'roughness length' depends on the frontal area of the average element
(facing the wind) divided by the ground width it occupies. Vertical sub-gridscale heat 
exchange (by turbulent eddies) can be expressed as the vertical gradient of potential 
temperature times the roughness length. 

A lower roughness length implies less exchange between the surface and the atmosphere, 
but also stronger wind near the ground (e.g. at the standard height of 10 m). 
A terrain classification based on roughness length is given in the following table:

Lecture 4: Numerical Formulation, page 71f) Typical Surface Albedos

http://www.gpa.uq.edu.au/courses/GEOS/2101/lectures/lecture2.pdf

Lecture 4: Numerical Formulation, page 72

Boundary conditions 1960 - 1999

g) Emissions
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Lecture 4: Numerical Formulation, page 73Simulation design, preparation, integration, interpretation

Simulation design:
 Choice of model configuration, including model vertical and horizontal 

resolution and complexity

 choice among the different subgrid scale parameterisations & parameters for it

 precise definition of the intial and boundary conditions that will be used for the 
experiment

 incorporate the material and personal constraints that can limit the scope of 
the simulation and try to find a reasonable balance between the scientific 
interest of the simulation and the overall costs and human and computer time. 

Preparation:

 prepare and check initial conditions and boundary conditions

Integration:
 start test runs (few months) 

 Start run and check regularly

 Postprocess the output in order to bring out interesting results

Interpretation:
 interpretation of the results

The different steps in a GCM simulation

Internal and 
Boundary 

Conditions

Initial 
conditions

Simulated 

climate

Observation 
and Sampling

Storage of
results

StatisticsModel Iteration

Parameters
Fixed Fields
Time-dependent fields

Restart

Lecture 4: Numerical Formulation, page 75

1.1 Short Desciption

The ECHAM model has been developed from the ECMWF model (cycle 31, November 1988). It
contains several changes, mostly in the parameterization, in order to adjust the model for climate
simulations.
The reference resolution is T42, but the model is set up to use resolutions in the range T21 to T106.
Long term integrations have so far only been done for T21, T30, T42 and T63. The layout is as
follows (indicates changes from the original ECMWF model):

1.2 Numerical solution

• Prognostic variables: e.g., vorticity, divergence, temperature, log surface pressure, 
water vapour, cloud species

• Horizontal representation:
spectral transform, triangular truncation (T42/T63/T106); in all practical
applications the series expansion of spherical harmonic functions must 
be truncated at some finite point.

• Vertical representation: 
hybrid coordinate system, second order finite differences, 19,  39,
and  69 layers

• Time integration: 
semi-implicit | leap frog with time filter,  t = 40 min (T21), 
t = 30min (T30), t = 24 min (T42), t = 15 min (T63), and 
t = 12 min (T106)

ECHAM5 user manual

Short Description of the GCM ECHAM5 (1 of 8) Lecture 4: Numerical Formulation, page 76

ECHAM5 user manual

1.3 Surface boundary conditions

• SST and sea-ice:
e.g. Hadley data set

• Orography: mean terrain heights computed from high resolution USGS GTOPO30 data set
• Land-sea mask: from USGS GTOPO30 data set
• Roughness length:

Sea: Charnock formula, modified after Miller et al. (1992)
Sea-ice: constant (0.01 m)
Land: function of vegetation and orography (variance)

• Vegetation:
fraction of grid area covered by vegetation based on Wilson and Henderson -
Sellers (1985) data

• Albedo:
Sea: function of solar zenith angle bare
Land: satellite data (Geleyn and Preuss (1983))
Sea ice: function of temperature (Robock,1980)
Land ice: function of temperature (Robock, 1980; Kukla and Robinson, 1980)
Snow: function of temperature and fractional forest area (Robock, 1980; Matthews, 

1983)

Short Description of the GCM ECHAM5 (2 of 8)

Lecture 4: Numerical Formulation, page 77

ECHAM5 user manual

Short Description of the GCM ECHAM5 (3 of 8)

1.4 Physical parameterization

Radiation: (Hense et al.,1982; Rockel et al, 1991; Eickerling, 1989)

• two-stream approximation
• six spectral intervals in the terrestrial part
• four spectral intervals in the solar part
• gaseous absorbers: H2O, CO2 and O3 (CO2 and O3 prescribed)
• aerosols: prescribed
• clouds: computed cloud optical depth and cloud cover
• emissivity: function of cloud water path (Stephens, 1978)
• continuum absorption: included
• cloud overlap: maximum for contiguous clouds layer and random otherwise
• diurnal cycle: included
• radiation time step: 2 hours

Lecture 4: Numerical Formulation, page 78

ECHAM5 user manual

Short Description of the GCM ECHAM5 (4 of 8)

1.4 Physical parameterization

Clouds: (Sundquist, 1978; Roeckner and Schlese, 1985; Roeckner et al, 1991)

Cloud water transport equation

Subgrid-scale condensation and cloud formation
with different thresholds for convective and stratiform clouds (Xu and 
Krueger, 1991)

Temperature dependent partitioning of liquid/ice phase (Matveev, 1984)

Rain formation by auto-conversion of cloud droplets (Sundquist, 1978)

Sedimentation of ice crystals (Heymsfeld, 1977)

Evaporation of cloud water
Evaporation of precipitation

See video on CLOUDS (EU-EUCLIPSE project) at 

http://www.youtube.com/watch?v=5UCb38WzkII
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Lecture 4: Numerical Formulation, page 79

ECHAM5 user manual

Short Description of the GCM ECHAM5 (5 of 8)

1.4 Physical parameterization

Connvection: (Tiedtke, 1989)

Mass flux scheme for deep, shallow and mid-level convection
Clouds are represented by a bulk model and include updraft and 

downdraft mass fluxes

Convective momentum transport
is parameterized according to Schneider and Lindzen (1976)

Evaporation of rain is parameterized according to Kessler (1969)

Stratocumulus convection
is parameterized as a vertical diffusion process with enhanced
eddy diffusion coefficients (Tiedtke et al., 1988)

Lecture 4: Numerical Formulation, page 80

ECHAM5 user manual

Short Description of the GCM ECHAM5 (6 of 8)

1.4 Physical parameterization

Land-surface processes: (Sellers et al., 1986; Blondin, 1989; Du"menil and Todini, 1992)

• Heat transfer: diffusion equation solved in a 5-layer model with zero heat flux at the
bottom (10 m )

• Water budget equation for three reservoirs:
soil moisture, interception reservoir (vegetation), snow

•Vegetation effects:
stomatal control on evapotranspiration and interception of rain and snow

• Run-off scheme: based on catchment considerations including sub-grid scale variations of
field capacity over inhomogeneous terrain

• Sea-ice temperature
calculated from surface energy budget

Lecture 4: Numerical Formulation, page 81

ECHAM5 user manual

Short Description of the GCM ECHAM5 (7 of 8)

1.4 Physical parameterization

Planetary boundary layer: (Louis, 1979)

• Surface fluxes of momentum, heat, moisture and cloud water
are calculated from Monin-Obukhov similarity theory with transfer coefficients 
depending on roughness length and Richardson number

• Above the surface layer:
eddy diffusivity approach with coefficients depending on wind shear, 
thermal stability and mixing length

• Above the PBL:
vertical diffusion only for unstable stratification

• Cloud species

• Moist Richardson number (Brinkop, 1991; 1992)

Lecture 4: Numerical Formulation, page 82

ECHAM5 user manual

Short Description of the GCM ECHAM5 (8 of 8)

1.4 Physical parameterization

Horizontal diffusion: (Laursen and Eliasen, 1989)

• Scale selective operator applied beyond a threshold wave number

Gravity wave drag (Palmer et al, 1986; Miller et al, 1989)

• Surface stress due to gravity waves, which are exited by stably stratified flow over 
irregular terrain is calculated from linear theory and dimensional considerations

• Orographic forcing prescribed as a directionally dependent sub-grid scale orographic 
variance computed from the high resolution USGS GTOPO30 data set

• Vertical structure of momentum flux induced by gravity waves calculated from a local 
wave Richardson number, which describes the onset of turbulence due to 
convective instability and the turbulent breakdown approaching a critical level

• The GWD scheme is not used at T21 resolution

Lecture 4: Numerical Formulation, page 83


