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Lecture, Summer term, LMU München 

An Introduction to Atmospheric Modelling

Lecture 7: Dynamics of the Atmosphere

Veronika Eyring
DLR - Institut für Physik der Atmosphäre

Oberpfaffenhofen

Content:

• Scales of Atmospheric Motion

• Local Winds

• Global Circulation

• Numerical Description in a Global Circulation Model

Lecture 7: Dynamics, page 2Components of a coupled chemistry-climate model (CCM)

Lecture 7: Dynamics, page 3Principle Forces and Definitions

Principle Forces and Definitions

Lecture 7: Dynamics, page 4Principle forces and Definitions

Q:  What drives the weather in the atmosphere?
Q:  What causes the weather to change?

We must analyse the predominant forces in the atmosphere, namely:

 Pressure and pressure gradients
 Gravity
 Rotation of the earth
 Friction 

Lecture 7: Dynamics, page 5Principle Laws and Approximations

Principle Laws and Approximations

Lecture 7: Dynamics, page 6Principle Laws and Approximations (Atmospheric Motion) 

 Newton’s second law (Conservation of momentum)

 Continuity Equation (Conservation of Mass)

 relates convergence of horizontal winds with vertical motion

 Thermodynamic Equation (1st Law of TD, Conservation of Energy )

 balance of heating & heat transport

 Equation of State

 relates pressure, density and temperature

 Hydrostatic Approximation

 pressure force versus gravity

Atmospheric motions are governed by three fundamental physical principles:
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Lecture 7: Dynamics, page 7Newtons’ Second Law

F = m a

The acceleration of an object is directly 
proportional to the net force acting on the 
object… 

…and inversely proportional to the mass of 
the object.

Lecture 7: Dynamics, page 8Conservation of momentum

Balanced Forces:

• Pressure Gradient Force

• Coriolis Force

• Friction

HpH
H Fvkf

Dt

vD 


)1(

Coriolis Force

Pressure Gradient

Frictional Force
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where  is the density of dry air,and V is the three-dimensional velocity vector.

means: overall mass transport balances (in = out)

mathematically:
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Means: “continuity equation” for heat:

Local temporal change in temperature
= horizontal advection of heat
+ vertical transport
+ diabatic heating or cooling (radiation, latent etc.)

Local temporal 
change in 
temperature

Horizonal advection
of heat

Vertical
Transport

Diabatic heating 
or cooling

Conversation of energy: dQ = dU + pdV dQ, dU, dV are increments in total energy, internal energy and volume

Lecture 7: Dynamics, page 11The Equation of State

 Ideal Gas
 An ideal gas can be characterized by three state variables: absolute pressure (P), 

volume (V), and absolute temperature (T). The relationship between them may be 
deduced from kinetic theory

 Air is an ideal gas, to good approximation: the pressure, density and temperature 
are related by the ideal gas law can be thought of either as a wave or as  a particle 
that represents the movement of energy through space  

Lecture 7: Dynamics, page 12Hydrostatic Approximation

dp  gdz

Scale Analysis for vertical component of the 
momentum equation:

Difference in pressure is balanced by gravity:
good approximation for the vertical dependence of 
the pressure field in the real atmosphere 

Approximation:

Pressure varies with height as if the air was 
motionless

Features:

and g are both positive => p decreases with height

Thickness of a layer between p1 and p2 is 
proportional to the average temperature
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Lecture 7: Dynamics, page 13Scale Analysis

'uUu 

Where U represents the large scale motion and u’ the small scale motion
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 A set of nonlinear partial differential equations that describe the flow of fluids 
such as liquids and gases.  

 For example: they govern the movement of air in the atmosphere, ocean 
currents, water flow in a pipe, as well as many other fluid flow phenomena.

 The equations are derived by considering the mass, momentum and energy 
balances for an infinitesimal control volume. 

 The Navier-Stokes equations need to  be augmented by an equation of state for 
compressible flows. The variables to be solved for are the velocity components, 
the fluid density, static pressure and temperature. 

 Solution depends on the fluid properties such as viscosity, specific heats, 
thermal conductivity etc and on the boundary conditions of the domain of study. 

Representation of Dynamical Processes in Global Atmospheric Models

 Physical Basis of Climate Modelling:

 mathematical representation of the physical laws that govern the climate 
behaviour

 from such model’s the future behaviour or future climate may be 
determined

 Atmospheric primitive equations

 A set of governing equations that describe large-scale atmospheric 
motions 

 can be derived from conservation laws governing momentum, mass, energy, 
and moisture (see Holton, 1979 - Chap. 2).  

 physics of the various interactive processes, serving to link the processes 
together

 These are called the primitive equations, not because they are crude or 
simplistic but because they are fundamental or basic.  Using the Eulerian 
framework in x-y-p coordinates, they can be written as follows:

 in case of the atmosphere these laws are expressed by the equations 
which describe the change of momentum, temperature, and moisture

Schlesinger, Part 1

Lecture 7: Dynamics, page 16Atmospheric Primitive Equations

 Atmospheric primitve equations

 The governing dynamic, thermodynamic, and conservation equations are 
mapped to a spherical geometry

 reducing set by the following 

 Basic prediction variables: 

 discretized horizontal wind components (u and v)

 Temperature

 water vapour represented by specific humidity (q)

 surface pressure

Schlesinger, Part 1

Prognostic variables: vorticity, divergence, 
temperature, specific humidity, log-surface 

pressure, cloud water, optional 21 Tracer
Surface boundary conditions: SST, 

orography, land-sea mask, albedo, roughness 
length, vegetation

Physical Parameterizations: radiation, clouds, 
precipitation, convection, PBL, land-surface 

processes, horizontal diffusion, GWD

Dynamics 
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Schlesinger, Part 1, page 16
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Atmospheric Primitive Equations
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D/Dt denotes the rate of change moving with a fluid particle

(1) from conservations of energy
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Schlesinger, Part 1, page 16
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Atmospheric Primitive Equations

Change of horizontal velocity vector: determined by

Coriolis Force

Pressure Gradient

Frictional Force
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Schlesinger, Part 1, page 16
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Atmospheric Primitive Equations

Temperature: Second prognostic variable

Based on the first law of thermodynamics, Equation (2) is the 

thermodynamic equation:

Local temporal change in temperature
= horizontal advection of heat
+ vertical transport
+ diabatic heating or cooling (radiation, latent etc.)

(2) from conservation of energy
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Schlesinger, Part 1, page 16
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Atmospheric Primitive Equations

Water vapour represented by specific humidity q: Third prognostic variable

Change in the rate of moisture

(3) from conservation of moisture

Schlesinger, Part 1, page 16
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Eq. 1-3 involve six variables

It is necessary to have three additional independent equations in order to formally complete the 
dynamical system.

These equations are provided by the equation of mass continuity (4), the hydrostatic 
approximation (5), and the equation of state (6)

Those equation describe the balances or equilibria which must exist among the variables
at all times

Serve to determine the distributions of ,  and in terms of prognostic variables
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Mass conservation Hydrostatic approximation Equation of state

Atmospheric Primitive Equations

Moisture conservationThermodynamic EquationMomentum Equation
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Schlesinger, Part 1, page 16

Atmospheric Primitive Equations: Prognostic Variables

Basic Prognostic Variables in a GCM

Discretized horizontal wind components u and v
Temperature T
Water vapour represented by specific humidity q 
Surface pressure

Furthermore models generally include
+ predictive equations for several surface fields
+ predictive equations for liquid water
+ predictive equations for ozone fields etc.
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Schlesinger, Part 1, page 16

Atmospheric Primitive Equations: Predictive Equation
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Mass conservation
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Schlesinger, Part 1, page 16

Prognostic Variables in ECHAM

Basic Prognostic Variables in the GCM ECHAM

Vorticity
Divergence
Temperature T
Water vapour represented by specific humidity q 
Log-surface pressure
Cloud water content
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Lecture 7: Dynamics, page 25Vertical Discretization

Schlesinger, Part 1, Page 33

 Define Vertical Coordinate

 The vertical structure of model variables is most commonly represented 
by values defined at a number of levels in the vertical.

 For the usual sigma coordinate, the pressure of a certain level is 
proportional to the surface pressure

 Therefore coordinate surfaces rise over rather than intersect mountains

 All prognostic variables are defined at the same level

Lecture 7: Dynamics, page 26Vertical Discretization in ECHAM5.L41

red: L41
black: L19

Lecture 7: Dynamics, page 27ECHAM5.L41 vertical coordinate coefficients

skkk pBAp   2/12/12/1

Lecture 7: Dynamics, page 28Horizontal Discretization: Finite Difference Method

Schlesinger, Part 1, page 34; Chapter on Finite-Difference Methods, page 79 ff 

 Finite-Difference Method:

 Variables are represented at one or a variety of grids, which vary 
according to the relative locations of wind and temperature location

 According to whether the grid separation is regular in longitude or 
physical distances as the poles are approaches

 Truncation Error: The residual, when the grid-point values of the true 
solution are substituted into the difference equation

 small-scale motions must be truncated due to horizontal and vertical 
discrestization

 The effects of the unresolved-scale variables on the resolved scales 
must be treated, giving an apparent friction F and apparent heating Q. 
Similar S becomes an apparent source.

Lecture 7: Dynamics, page 29Horizontal Discretization: Spectral Method

 Spectral Method:
 Predictive Variables, generally include vorticity and divergence rather than the 

horizontal wind components

 Predictive Variables are represented in terms of truncated expansions of 
spherical harmonics

 Nonlinear terms are evaluated on an almost regular latitude-longitude grid, and the 
spectral tendencies calclulated by quadrature

 Triangular Truncation (N=M) most common

 More about Spectral Models in Lecture 8 General Circulation Models (GCMs)
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Schlesinger, Part 1, page 34; Chapter on Spectral Methods, page 169 ff 
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• Many wave-like features of the atmosphere are best simulated with wave 
formulation

• However, not usually in all directions

• a rectangular grid is used for vertical transfers, and radiative transfer and surface 
processes are modeled in this grid space

• the data fields are transformed to grid space at every time step via fast Fourier 
transforms and Gaussian quadrature (a form of numerical integration) and back 
to spectral space via Legendre and Fourier transforms.

• time stepping is performed with the waveform representation and grid-point 
physics is incorporated after transformation into grid space. 

• Roughly physics means everything that is not described in the primitive 
equations.
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Lecture 7: Dynamics, page 31Flow through the computational scheme of a spectral AGCM

Get startup data or results 
from previous run

Transform selected 
variables back into 

spectral space

Perform grid point 
physics

Transform spectral fields 
into grid space

Move forward one time 
step

Possibly output 
results for 
analysis

Possibly output 
data for next run
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