

Atmospheric motions are governed by three fundamental physical principles:		
• Newton's second law	(Conservation of momentum)	
Continuity Equation	(Conservation of Mass)	
 relates convergence of horiz 	zontal winds with vertical motion	
• Thermodynamic Equation	(1st Law of TD, Conservation of Energy	
 balance of heating & heat tr 	ransport	
Equation of State		
 relates pressure, density an 	d temperature	
• Hydrostatic Approximation	L	
pressure force versus gravit	ty	
CIA Deutsches Zentrum DIR Var Luft- und Raumfahrt et/ in der interholiz-Generesonan		

$\mathbf{u} = \mathbf{U} + \mathbf{u}'$

Scale Analysis

DLR Deutsches Zentrum

Where U represents the large scale motion and u' the small scale motion

Lecture 7: Dynam

ics, page 1

epresentation of Dynamical Processes in Global Atmospheric Models Atmospheric Primitive Equations Lecture 7: Dynamics, page 1 Physical Basis of Climate Modelling: Atmospheric primitve equations mathematical representation of the physical laws that govern the climate behaviour > The governing dynamic, thermodynamic, and conservation equations are mapped to a spherical geometry from such model's the future behaviour or future climate may be reducing set by the following determined Basic prediction variables: Atmospheric primitive equations * discretized horizontal wind components (u and v) • A set of governing equations that describe large-scale atmospheric motions * Temperature can be derived from conservation laws governing momentum, mass, energy, and moisture (see Holton, 1979 - Chap. 2). * water vapour represented by specific humidity (q) physics of the various interactive processes, serving to link the processes together * surface pressure Dynamics These are called the primitive equations, not because they are crude or simplistic but because they are fundamental or basic. Using the Eulerian framework in x-y-p coordinates, they can be written as follows:

in case of the atmosphere these laws are expressed by the equations which describe the change of momentum, temperature, and moisture

Atmospheric Primitive Equations	Lecture 7: Dynamics, page 20	
(1) $\frac{D\vec{v}_{H}}{Dt} + f k \times \vec{v}_{H} + \nabla_{p} \Phi = \vec{F}_{H}$ (2) $\frac{Dc_{p}T}{Dt} + \frac{Dp}{dt} \alpha = Q$	$(3 \bigcirc \frac{Dq}{Dt}) S$	
Water vapour represented by specific humidity q: Third prognostic variable		
Change in the rate of moisture		
(3) from conservation of moisture		
DLR Deutsches Zentrum In der Heinrode-Cennenyout	Schlesinger, Part 1, page 16	

Vertical Discretization

DLR Deutsches Zentrum für Luft- und Raumf

• Define Vertical Coordinate

- The vertical structure of model variables is most commonly represented by values defined at a number of levels in the vertical.
- For the usual sigma coordinate, the pressure of a certain level is proportional to the surface pressure
- ${\scriptstyle \blacktriangleright}$ Therefore coordinate surfaces rise over rather than intersect mountains

Lecture 7: Dynam

iics, page 25

nger, Part 1, Page 33

All prognostic variables are defined at the same level

Why spectral models?	Lecture 7: Dynamics, page 30
Many wave-like features of the atmosphere are best sin formulation	nulated with wave
 However, not usually in all directions 	
 a rectangular grid is used for vertical transfers, and radi processes are modeled in this grid space 	iative transfer and surface
 the data fields are transformed to grid space at every tii transforms and Gaussian quadrature (a form of numerio to spectral space via Legendre and Fourier transforms. 	me step via fast Fourier cal integration) and back
 time stepping is performed with the waveform represen physics is incorporated after transformation into grid sp. 	tation and grid-point ace.
 Roughly physics means everything that is not described equations. 	d in the primitive
Deutsches Zentrum DRR, No Luft- und Raumfahrt ei X n ein kinnetzig Generatum	

