CCMVal


CCM Validation Activity for SPARC
(CCMVal)
SPARC

WCRP

 
BACK
  
Participating CCMs and Model PIs

Publication of model results and their interpretation in the scientific literature is encouraged.

Coordinators and model PIs CCMVal-2: Table of contacts for CCMVal-2 data stored at the CCMVal Archive at BADC; please inform this group on the status of your work.
Directory at BADC: 
/project_spaces/ccmval/CCMVal-2/Reference_Runs
Simulations: described in Eyring et al. (2008), Morgenstern et al. (2010) and Chapter 2 of the SPARC CCMVal Report.
Reference: SPARC CCMVal Report (2010)

 

 

Group and Location

 

0

Coordination CCMVal-2

DLR, Germany; JHU, USA; Univ. of Toronto, Canada

Veronika Eyring, Darryn Waugh, Ted Shepherd

1

AMTRAC3

GFDL, USA

John Austin

2

CAM3.5

NCAR, USA

Jean-Francois Lamarque

3

CCSRNIES

NIES, Tokyo, Japan

Hideharu Akiyoshi

4

CMAM

MSC, University of Toronto, York Univ., Canada

David Plummer, John Scinocca, Ted Shepherd

5

CNRM-ACM

Meteo-France; France

Martine MichouHubert Teyssedre

6

E39CA

DLR, Germany

Martin Dameris, Hella Garny

7

EMAC-FUB

Ulrike Langenmatz, Anne Kubin, Patrick Jöckel

8

EMAC

MPI Mainz, Germany

Andreas Baumgaertner, Christoph Brühl, Patrick Jöckel

9

GEOSCCM

NASA/GSFC, USA

Steven Pawson, Anne Douglass, Stacey Frith

10

LMDZrepro

IPSL, France

Slimane Bekki, Marion Marchand

11

MRI

MRI, Japan

Kiyotaka Shibata

12

NIWA-SOCOL

NIWA, NZ

Dan Smale, Olaf Morgenstern

13

SOCOL

PMOD/WRC and ETHZ, Switzerland

Eugene Rozanov, Tom Peter

14

ULAQ

University of L'Aquila, Italy

Eva Mancini, Gianni Pitari

15

UMETRAC

NIWA, NZ

Olaf Morgenstern

16

UMSLIMCAT

University of Leeds, UK

Martyn Chipperfield, Sandip Dhomse, Wenshou Tian

17

UMUKCA-METO

MetOffice, UK

Neal Butchart, Steven Hardiman

18

UMUKCA-UCAM

University of Cambridge, UK

Peter Braesicke, Olaf Morgenstern, John Pyle

19

WACCM (v.3)

NCAR, USA

Rolando Garcia, Andrew Gettelman, Doug Kinnison



CCMVal-1:

Model output from several CCM simulations is currently being stored in the CCMVal archive at the
British Atmospheric Data Centre (BADC) (see Table 1). The main features of the participating CCMs are listed in Table 2. An assessment of temperature, trace species and ozone in the simulations of the recent past from these CCMs has been finalized and an assessments of the ozone projections in the 21st century is currently in preparation [Eyring et al., 2006a,b].

Notes, Errata and  Updates on the BADC archive

The following acknowledgment should be included in any publication that uses data from the BADC Archive. Each modeling group whose output is used should be explicitly acknowledged (see Table 1 for group names and institutional affiliations):
"We thank the [group name(s)] at [institution name(s)], for providing their model output for this analysis; the Chemistry-Climate Model Validation Activity (CCMVal) of WCRP-SPARC (World Climate Research Programme - Stratospheric Processes and their Role in Climate) for organizing the model data analysis activity; and the British Atmospheric Data Center (BADC) for collecting and archiving the model output." 

Table 1: CCMVal-1: A summary of the CCMs, including the external forcings and representation of QBO used in the model simulations. The past simulations (‘REF1’) and the future simulation (‘REF2’ or ‘SCN2’) are described in Eyring et al. [2005]. All forcings can be downloaded from the CCMVal forcing website. Changes in halogen concentrations in the ‘future’ simulations are prescribed following the Ab scenario [WMO, 2003; Table 4B-2] and WMGHGs are based on the IPCC SRES scenario A1B(medium) [IPCC, 2000] in all simulations. Sulfate surface area densities beyond 1999 are fixed at 1999 conditions (volcanically clean conditions).

Model

Group

Investigators

Runs

SSTs

Solar Variability

QBO

Reference

AMTRAC

GFDL, USA

J. Austin

3×REF1a
1960-2004

Hurrell et al. [2006]

Lean [2000]

NO

Austin et al. [2006];
Austin and Wilson [2006]

3×SCN2b
1990-2099

From a run of the coupled atmosphere-ocean model of the GFDL model.

 

NO

CCSRNIES

NIES, Tokyo, Japan

H. Akiyoshi
T.Nagashima

1×REF1
1980-2004

HadISST1, Rayner et al. [2003]

Lean et al. [1997]

Forced

Akiyoshi et al. [2004];
Kurokawa et al. [2005]

1×REF2
1980-2050

Output from CCSR/NIES/FRCGC
Atmosphere-Ocean coupled model,

Shiogama et al. [2005]

NO

NO

CMAM

MSC, University of Toronto and York University, Canada

D. Plummer
T. Shepherd

1×REF1
1960-2004

HadISST1, [Rayner et al., 2003]

NO

NO

Beagley et al. [1997];
de Grandpré et al. [2000]

3×REF2
1960-2099

Modeled from the coupled version of the Canadian GCM and the three members all use a different realization of the SSTs from the coupled model

NO

NO

E39C

DLR Oberpfaffen- hofen, Germany

M. Dameris
V. Eyring

3×REF1
1960-1999

HadISST1
[Rayner et al., 2003]

Lean et al. [1997]

Forced

Dameris et al. [2005, 2006]

4×SCN2
2000-2019

Predicted from HadCM3 [Williams et al., 2001]

Solar cycles from the late 1950s to the 1970s

Forced (1960s to 1970s)

GEOSCCM

NASA/GSFC, USA

S. Pawson
R. Stolarski

1×REF1c
1960-2003

HadISST1, Rayner et al. [2003]

NO

NO

Stolarski et al. [2006];
Pawson et al. [2008]

1×REF2
2000-2050

HadGEM1

NO

NO

LMDZrepro

IPSL, France

S. Bekki


1×REF1d
 1979-1999

AMIP II, [Taylor et al., 2000]

NO

NO

Chemistry part: Lefevre et al. [1994]

MAECHAM4 CHEM

MPI Mainz, MPI Hamburg, Germany

C. Brühl
M. Giorgetta
E. Manzini



1×REF1
1980-1999

HadISST1
[Rayner et al., 2003]

Lean et al. [1997]

Forced

Manzini et al. [2003];
Steil et al. [2003]

1×REF2
1×SCN2
2000-2019

Predicted from HadCM3 in SCN2 [Williams et al., 2001]

NO / Solar cycles from the late 1950s to 1970s

NO /
Forced

MRI

 MRI, Tsukuba, Japan

K. Shibata
M. Deushi

1×REF1
1980-2004

HadISST1, Rayner et al. [2003]

Lean et al. [1997]

Internally generated

Shibata and Deushi [2005]; Shibata et al. [2005]

1×REF2
1980-2050

From a simulation of the MRI coupled atmosphere-ocean model, MRI-CGCM2.3 [Yukimoto et al., 2005] 

NO 

Internally generated

SOCOL

PMOD/WRC and ETHZ, Switzerland

E. Rozanov



 

1×REF1
1980-2004

HadISST1, Rayner et al. [2003]

Lean [2000]

Forced

Egorova et al. [2005];

Rozanov et al. [2005]

 

1×REF2
1980-2050

From HadCM3
[Williams et al., 2001]
AMIP II, Taylor et al. [2000]

NO

NO

ULAQ

University of L'Aquila, Italy

E. Mancini
G. Pitari

1×REF1d
1960-2004

HadISST1, Rayner et al. [2003]

NO

NO

Pitari et al. [2002]

 

1×REF2
1980-2050

HadISST1 up to 2019. Repeated 2010-2019 cycle after 2019.

NO

NO

UMETRAC

UK Met Office, UK

N. Butchart

1×REF1
1980-1999

HadISST1, Rayner et al. [2003]

Intensity of the 10.7 cm radiation of the sun from Lean et al. [1997]

Internally generated

Austin [2002];
Austin and Butchart [2003];
Struthers et al. [2004] 

UMSLIMCAT

University of Leeds, UK

M. Chipperfield
W. Tian

1×REF1
1980-1999

AMIP II
Gates et al. [1999]

NO

Internally generated

Tian and Chipperfield [2005]

1×REF2
1980-2020

HadISST1 up to 2019

NO

Internally generated

WACCM (v.3)

NCAR, USA

R. Garcia
D. Kinnison

3×REF1a
1950-2003

Hurrell et al. [2006]

www.sec.noaa.gov

NO

Garcia et al. [2006]

3×REF2
1980-2050

REF2: from CAM3 run using same GHG scenario as REF2

NO

NO

  1. REF1 but with SSTs from Hurrell et al. (2006) and without QBO
  2. SCN2 without QBO
  3. REF1 without QBO, solar cycle, and volcanic eruptions
  4. REF1 without QBO and solar cycle

Table 2: CCMVal-1: Model output from the following CCMs is currently stored at BADC. The models are listed alphabetically by name. The horizontal resolution is given in degrees latitude × longitude (grid point models). For spectral models the resolution is also given as T30, T32, and T42 corresponding to the triangular truncation of the spectral domain with 30, 32, and 42 wave numbers, respectively. All CCMs have a comprehensive range of chemical reactions. The time varying concentrations of CO2 as well as other WMGHGs are considered in the radiation schemes of all models.

Model

Reference

Underlying GCM

Domain /  resolution

Radiative Feedbacks

Tracer Advection Scheme

O-GWD

 

NonO-GWD

 

AMTRAC

Austin et al. [2006]; Austin and Wilson [2006]

AM2

[Anderson et al., 2004]

2° x 2.5°

48 L 

0.0017 hPa

O3, H2O

Finite- Volume

[Lin, 2004]

Stern and Pierrehumbert [1988]

Alexander  and Dunkerton [1999]

CCSRNIES

Akiyoshi et al. [2004];

Kurokawa et al. [2005]

CCSRNIES

[Numaguti, 1993]

2.8° x 2.8° (T42)  

34 L

0.01 hPa

O3, H2O, CH4, N2O, CFCs

Spectral in the horizontal, 
finite difference for the vertical

McFarlane  [1987]

Hines [1997]

CMAM

Beagley et al. [1997];
de Grandpré et al. [2000]

CCCma AGCM3
[Scinocca and McFarlane, 2004]

3.75° x 3.75° (T32)

71L

0.0006 hPa

O3, H2O

Spectral in the horizontal, finite elements in the vertical

Scinocca and McFarlane [2000]

Scinocca [2003]

E39C

Dameris et al. [2005, 2006]

ECHAM4 [Roeckner et al., 1996]

3.75° x 3.75°   (T30)

39L

10 hPa

O3, CH4, N2O, H2O, CFCs

Semi- Lagrangian  [Williamson & Rasch, 1994]

Miller et al. [1989]

None

GEOSCCM

Stolarski et al. [2006]; Pawson et al. [2008]

GEOS-4 [Bloom et al., 2005]

2° x 2.5°

55 L

0.01hP

O3, H2O, CH4, N2O, CFC-11, CFC-12

Finite-Volume [Lin, 2004]

Kiehl et al. [1998]

Adapted from Garcia and Boville [1994]

LMDZrepro

Chemistry part:
Lefevre et al.
[1994]

LMDz4 [Lott et al., 2005]

2.5° x 3.75°

50 L

0.07 hPa

O3, CH4, N2O, H2O, CFC-11, CFC-12

Finite- Volume [Hourdin and Armengaud, 1999]

Lott and Miller [1997]

Hines [1997]

MAECHAM4CHEM

Manzini et al. [2003]; Steil et al. [2003]

MA

ECHAM4

[Manzini et al., 1997]

3.75° x 3.75°  (T30)

39 L

0.01 hPa

O3, H2O, CH4

Fluxform Semi-Lagrange SPITFIRE [Steil et al., 2003]

McFarlane [1987]

Hines  [1997]

MRI

Shibata and Deushi [2005];
Shibata et al.
[2005]

MRI/JMA98 [Shibata et al., 1999]

2.8° x 2.8° (T42)

68 L

0.01 hPa

O3, CH4, N2O

Hybrid semi-Lagrangian [Shibata et al., 2005]

Iwasaki et al. [1989], only short-wavelength GW

Hines [1997]

 

SOCOL

Egorova et al. [2005]; Rozanov et al. [2005]

MA

ECHAM4

[Manzini et al., 1997]

3.75° x 3.75°   (T30)

39 L

0.1 hPa

O3, CH4, N2O, H2O, CFCs

Hybrid advection scheme [Zubov et al., 1999]

McFarlane [1987]

Hines  [1997]

ULAQ

Pitari et al. [2002]

ULAQ-GCM [Pitari et al., 1992]

10° x 22.5

26 L

0.04 hPa

O3, H2O, CH4, N2O, CFCs, HCFCs, aerosols.

Flux-form Eulerian fully explicit scheme [e.g Pitari et al., 2002]

 

Rayleigh friction [Smith and Lyjak, 1985]

UMETRAC

Austin [2002];
Austin and Butchart
[2003];
Struthers et al.
[2004]

UM     [Pope et al., 2000]

2.5° x 3.75°

64 L

0.01 hPa

 

O3, H2O

Quintic-mono

[Gregory and West, 2002]

Gregory et al. [1998]

Warner and McIntyre [1996]

UMSLIMCAT

Tian and Chipperfield [2005]

UM

[Pope et al., 2000]

2.5° x 3.75°

64 L

0.01 hPa

O3, CH4, N2O, H2O

Quintic-mono

[Gregory and West, 2002]

Gregory et al. [1998]

Warner and McIntyre [1996]

WACCM (v.3)

Garcia et al. [2006]

CAM

[Collins et al., 2004]

4° x 5°

66 L

4.5x10-6 hPa

O3, H2O, N2O, CH4, CFC-11, CFC-12

NO, CO2, O2

Finite- Volume [Lin, 2004]

McFarlane [1987]

Based on Lindzen [1981], Holton [1982], Garcia and Solomon [1985]

 
References for Participating CCMs and CCMVal Assessments:
References listed under the columns 'SSTs', 'QBO', 'GWD' etc. in Table 1 and 2 can be found in Eyring et al. [2006a,b].


Akiyoshi, H., T. Sugita, H. Kanzawa, and N. Kawamoto (2004), Ozone perturbations in the Arctic summer lower stratosphere as a reflection of NOx chemistry and planetary scale wave activity,
J. Geophys. Res.
, 109, D03304, doi:10.1029/2003JD003632.

Austin, J. (2002), A three-dimensional coupled chemistry-climate model simulation of past stratospheric trends, J. Atmos. Sci., 59, 218-232.

Austin, J., and N. Butchart (2003), Coupled chemistry-climate model simulation for the period 1980 to 2020: ozone depletion and the start of ozone recovery, Quart. J. Roy. Meteor. Soc.,
129, 3,225-3,249.

Austin, J., and R. J. Wilson (2006), Ensemble simulations of the decline and recovery of stratospheric ozone, J. Geophys. Res., 111, D16314, doi:10.1029/2005JD006907.

Austin, J., R. J.Wilson, F. Li, and H. Vömel (2006), Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry-climate model simulations, J. Atmos. Sci., submitted.

Beagley, S. R., J. de Grandpré, J. N. Koshyk, N. A. McFarlane, and T.G. Shepherd (1997), Radiative-dynamical climatology of the first-generation Canadian Middle Atmosphere Model, 
Atmos.-Ocean
, 35, 293–331.
Bloom, S., A. da Silva, D. Dee, M. Bosilovich, J.-D. Chern, S. Pawson, S. Schubert, M. Sienkiewicz, I. Stajner, W.-W. Tan, and M.-L. Wu (2005), Documentation and Validation of the 
Goddard Earth Observing System (GEOS) Data Assimilation System - Version 4. Technical Report Series on Global Modeling and Data Assimilation 104606 , 26.

Dameris, M., V. Grewe, M. Ponater, R. Deckert, V. Eyring, F. Mager, S. Matthes, C. Schnadt, A. Stenke, B. Steil, C. Brühl, and M. Giorgetta (2005), Long-term changes and variability in a
transient simulation with a chemistry-climate model employing realistic forcings,  Atmos. Chem. Phys., 5, 2121-2145.

Dameris, M., S. Matthes, R. Deckert, V. Grewe, and M. Ponater (2006), Solar cycle effect delays onset of ozone recovery, Geophys. Res. Lett., 33, L03806, doi:10.1029/2005GL024741.

de Grandpré, J., S. R. Beagley, V. I. Fomichev, E. Griffioen, J. C. McConnell, A. S. Medvedev, and T. G. Shepherd (2000), Ozone climatology using interactive chemistry:
Results from the Canadian Middle Atmosphere Model, J. Geophys. Res., 105, 26,475-26,492.

Egorova, T., E. Rozanov, V. Zubov, E. Manzini, W. Schmutz, and T. Peter (2005), Chemistry-climate model SOCOL: a validation of the present-day climatology, Atmos. Chem. Phys., 5, 1557-1576.

Eyring, V., D. E. Kinnison, and T. G. Shepherd (2005), Overview of planned coupled chemistry-climate simulations to support upcoming ozone and climate assessments, SPARC Newsletter No. 25, 11-17.

Eyring, V., N. Butchart, D. W. Waugh, H. Akiyoshi, J. Austin, S. Bekki, G. E. Bodeker, B. A. Boville, C. Brühl, M. P. Chipperfield, E. Cordero, M. Dameris, M. Deushi, V. E. Fioletov, S. M. Frith, R. R. Garcia, A. Gettelman, M. A. Giorgetta, V. Grewe, L. Jourdain, D. E. Kinnison, E. Mancini, E. Manzini, M. Marchand, D. R. Marsh, T. Nagashima, P. A. Newman, J. E. Nielsen, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, M. Schraner, T. G. Shepherd, K. Shibata, R. S. Stolarski, H. Struthers, W. Tian, and M. Yoshiki (2006a), Assessment of temperature, trace species and ozone in chemistry-climate model simulations of the recent past, J. Geophys. Res., accepted.

Eyring, V., D.W. Waugh, G.E. Bodeker, E. Cordero, H. Akiyoshi, J. Austin, S.R. Beagley, B. Boville, P. Braesicke, C. Brühl, N. Butchart, M.P. Chipperfield, M. Dameris, R. Deckert, M. Deushi, S.M. Frith, R.R. Garcia, A. Gettelman, M. Giorgetta, D.E. Kinnison, E. Mancini, E. Manzini, D.R. Marsh, S. Matthes, T. Nagashima, P.A. Newman, J. E. Nielsen, S. Pawson, D.A. Plummer, G. Pitari, E. Rozanov, M. Schraner, J.F. Scinocca, K. Semeniuk, T.G. Shepherd, K. Shibata, B. Steil, R. Stolarski, W. Tian, and M. Yoshiki (2006b), Multi-model projections of ozone recovery in the 21st century, J.Geophys. Res., in preparation.

Garcia, R. R., D. Marsh, D. Kinnison, B. Boville, and F. Sassi (2006), Simulations of secular trends in the middle atmosphere, 1950-2003, J. Geophys. Res., submitted.

Kurokawa, J., H. Akiyoshi, T. Nagashima, H. Masunaga, T. Nakajima, M. Takahashi, and H. Nakane (2005), Effects of atmospheric sphericity on stratospheric chemistry and dynamics over Antarctica, J. Geophys. Res., 110, D21305, doi:10.1029/2005JD005798.

Lefevre, F., G. P. Brasseur, I. Folkins, A.K. Smith, and P. Simon (1994), Chemistry of the 1991-1992 stratospheric winter: Three dimensional model simulations, J. Geophys. Res., 99, 8183-8195.

Manzini, E., B. Steil, C. Brühl, M. A. Giorgetta, and K. Krüger (2003), A new interactive chemistry climate model. 2: Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases: implications for recent stratospheric cooling, J. Geophys. Res., 108, 4429, doi:10.1029/2002JD002977.

Pawson, S., R.S. Stolarski, A.R. Douglass, P.A. Newman, J.E. Nielsen, S.M. Frith, M.L. Gupta (2008), Goddard Earth Observing System Chemistry-Climate Model Simulations of Stratospheric Ozone-Temperature Coupling Between 1950 and 2005.  J. Geophys. Res., 113, D12103, doi:10.1029/2007JD009511.

Rozanov, E., M. Schraner, C. Schnadt, T. Egorova, M. Wild, A. Ohmura, V. Zubov, W. Schmutz, and Th. Peter (2005), Assessment of the ozone and temperature variability during 1979–1993 with the chemistry-climate model SOCOL, Adv. Space. Res., 35, 1375-1384.

Shibata, K., and M. Deushi (2005), Partitioning between resolved wave forcing and unresolved gravity wave forcing to the quasi-biennial oscillation as revealed with a coupled chemistry-climate model, Geophys. Res. Lett., L12820, doi:10.1029/2005GL022885.

Shibata, K., M. Deushi, T. T. Sekiyama, and H. Yoshimura (2005), Development of an MRI chemical transport model for the study of stratospheric chemistry, Papers in Meteorology and Geophysics, 55, 75-119. 

Steil, B., C. Brühl, E. Manzini, P. J. Crutzen, J. Lelieveld, P. J. Rasch, E. Roeckner, and K. Krüger (2003), A new interactive chemistry climate model. 1: Present day climatology and interannual variability of the middle atmosphere using the model and 9 years of HALOE/UARS data, J. Geophys. Res., 108, 4290, doi:10.1029/2002JD002971.

Stolarski, R. S., A. R. Douglass, S. Steenrod, and S. Pawson (2006): Trends in Stratospheric Ozone: Lessons Learned from a 3D Chemical Transport Model, J. Atmos. Sci., 63, 1028-1041.

Struthers, H., K. Kreher, J. Austin, R. Schofield, G. E. Bodeker, P. V. Johnston, H. Shiona, and A. Thomas (2004), Past and future simulations of NO2 from a coupled chemistry-climate model in comparison with observations, Atmos. Chem. Phys., 4, 2227–2239.

Tian, W., and M.P. Chipperfield (2005), A new coupled chemistry–climate model for the stratosphere: The importance of coupling for future O3-climate predictions, Quart. J. Roy. Meteor. Soc., 131, 281–304.



Last modified:  12 August 2009
by Veronika Eyring