SCOUT-O3 Validation and Intercomparison of
Coupled Chemistry Climate Models (Workpackage WP1.1)
Work Package Leaders: Neal Butchart (UKMO) & Veronika Eyring (DLR)
Partners: MPIC, MPIMET, FUB, INGV, ULAQ, UIO, UCAM, ULEEDS, PMOD, UCI, DMI, CNRS-LMD/LS
CCM Validation Activity for SPARC
Partners: All CCMs worldwide
BACK
All CCMs worldwide: 

Table 1. Main features of coupled chemistry-climate models. CCMs are listed alphabetically. CCMs participating in SCOUT-O3 are marked yellow.

The horizontal resolution is given in either degrees latitude × degrees longitude (grid point models), or as T21, T30, etc. which are the resolutions in spectral models corresponding to triangular truncation of the spectral domain with 21, 30, etc. wave numbers, respectively. All CCMs have a comprehensive range of chemical reactions  except that in the UMUCAM model the chemistry is parameterised. The coupling between chemistry and dynamics is represented in all models, but to a different degree. All models include orographic gravity wave drag schemes (O-GWD), some of the models additionally include non-orographic gravity wave drag schemes (NonO-GWD).

Model

Horiz. Res.

No. Vert. Levels/Upper boundary

Underlying GCM

Stratospheric Chemistry

Coupling   chemistry / dynamics

Gravity wave param.

Group and location

Reference

AM2 2 x 2.5° 48 /          0.0017 hPa AM2 Extended version of published UMETRAC O3, H2O O-GWD+ NonO-GWD GFDL, USA Anderson et al. (2004), Austin (2002)
CCSRNIES T21 30 /       0.06 hPa CCSR/NIES AGCM Ver. 5.4g YES
(basically identical to Takigawa et al., 1999)
O3, H2O, CH4, N2O, CFCs O-GWD + NonO-GWD NIES, Tsukuba, Japan Takigawa et al. (1999) ;Nagashima et al. (2002)
CMAM T32 or T47 65 /    0.0006 hPa CCCma GCMIII YES O3, H2O O-GWD +     NonO-GWD MSC, University of Toronto & York University, Canada de Grandpré et al. (1997,2000)            Beagley et al. (1997)
E39C T30 39 /             10 hPa ECHAM4.L39(DLR) YES
(CHEM; Steil et al., 1998)
O3, H2O, CH4, N2O, CFCs O-GWD DLR, Ober-pfaffenhofen, Germany Dameris et al., (2004)
ECHAM5 MESSy T31 or T42 39 or 90/ 0.01hPa ECHAM5 YES (MECCA, Sander et al  2004) H2O, O3 CH4, N2O, CFCs O-GWD + NonO-GWD MPI -C, Mainz, MPI-M, Hamburg, Germany Jöckel et al, (2004)
FUBCMAM T21 34 /          0.0068 hPa Based on ECHAM YES
(CHEM; Steil et al., 1998)
O3, H2O, CH4, N2O, CFCs O-GWD+      NonO-GWD FU Berlin MPI-C, Mainz, Germany Langematz et al., 2004
GCCM T42 18 /
2.5 hPa
NCAR CCM3 (Kiehl et al., 1998) SynOz (McLinden et al., 2000) or SUNYA 4-D ozone climatology Wong & Wang, 2003 O3 O-GWD University of Oslo, Norway SUNY Albany, USA Wong et al. (2004)
GEOS CCM 2 x 2.5˚ 55 /        80km FVGCM YES
Douglass et al. (2003) Kawa et al. (2002)
O3 O-GWD+      NonO-GWD NASA/GSFC, USA Newman et al. (2005)
GISS 4 x 5° 23 /     0.002 hPa GISS ModelE YES O3, H2O, N2O, CH4, CFCs O-GWD +     NonO-GWD NASA GISS, New York, USA Schmidt et al. (2005a)
HAMMONIA T31 67 / 2e-7 hPa ECHAM5 YES
(MOZART 3 inline, fully interactive)
O, O2, O3, H2O, N2O, CO2, CH4
+ chemical heating
O-GWD+      NonO-GWD MPI-M, Hamburg Schmidt et al. (2005b)
LMD REPRO 2.5 x 3.75° 50/
0.07 hPa
LMDz YES O3, H2O, N2O, CH4, CFCs O-GWD+ NonO-GWD Institut Pierre-Simon Laplace France  
MA ECHAM4 CHEM T30 39 /          0.01 hPa MA ECHAM4 YES                   (CHEM; Steil et al., 1998) O3, H2O, CH4, N2O, CFCs O-GWD+      NonO-GWD MPI C, Mainz, MPI-M, Hamburg, Germany Steil et al. (2003); Manzini et al. (2003)
SOCOL T30 39 /              0.01 hPa MA ECHAM4 Yes                      (UIUC-CCM, Rozanov et al., 2001) O3, H2O O-GWD+ NonO-GWD PMOD/WRC and ETHZ, Switzerland Egorova et al. (2004)
ULAQ 10 x 22.5° 26 /          0.04 hPa ULAQ YES O3, H2O, CH4, N2O, CFCs, aerosols Rayleigh friction + vertical diffusion University of        L' Aquila,         Italy Pitari et al. (2002)
UMETRAC
 
UMETRACv4
2.5 x 3.75°
2.5 x 3.75°
64 /             0.01 hPa
 
64/0.01 hPa
HadAM3
 
HadAM3
YES
 
YES
O3
 
O3, H2O
O-GWD+ NonO-GWD
O-GWD+ NonO-GWD
UK Met Office
 
NIWA Lauder (NZ)
Austin (2000)            Austin & Butchart (2003)
UM
SLIMCAT
2.5 x 3.75° 64 /          0.01 hPa HadAM3 YES (SLIMCAT/TOMCAT) Chipperfield (1999) O3, N2O, CH4, H2O O-GWD+ NonO-GWD University of Leeds, UK Tian and. Chipperfield (2005)
UMUCAM 2.5 x 3.75° 58 /               0.1 hPa HadAM3 Parametrised O3 O-GWD + Rayleigh friction University of Cambridge, UK Braesicke and Pyle (2003 and 2004)
WACCM1bMOZART3 T43 66 / 140 km CCM3.6/
CAM2
GHGs only inline. Output drives MOZART3 CTM offline CH4, N2O, H2O, CFCs O-GWD+ NonO-GWD NCAR, USA Sassi et al. (2002)
WACCM3
 
2x2.5°
4x5°
66 /          140 km CAM3 YES
(MOZART3 inline, fully interactive)
Fully coupled (all relevant SW and LW absorbers/ emitters) O-GWD+ NonO-GWD NCAR, USA Sassi et al. (2005)


Table 2. Main specification of AVAILABLE TRANSIENT CCM model simulations for the time frame 1960 to 2000. CCMs are listed alphabetically. External Forces and boundary conditions are specified. CCMs participating in SCOUT-O3 are marked yellow.

Model

Time Period

Available Data

QBO

Volcanoes

Solar Cycle

SSTs

GHG

Halogens

AM2 None -- -- -- -- -- -- --
CCSR/ NIES 1986-2000 All variables: 10-day mean field NO NO NO Separately calculated by CCSR/NIES CGCM IS92a WMO (1999)
CMAM None -- -- -- -- -- -- --
E39/C 1960-2000 Monthly mean fields as well as up to twice per day of all important dynamic variables and chemical constituents Assimilated QBO Aerosol loading based on SAGE data; heating rates  Kirchner et al.,1999 From Herzberg Institute of Astrophyscis Assimilated SSTs from Hadley Centre for Climate Prediction and Research IPCC A2 WMO (2003)
ECHAM5/ MESSy None -- -- -- -- -- -- --
FUBCMAM 1980-2000 Monthly mean fields as well as four times per day of all important dynamic variables and chemical constituents NO NO NO AMIP II IS92a WMO (1999)
GCCM None -- -- -- -- -- -- --
GEOS CCM 1973-2000 CTM only available NO YES YES Hadley IPCC WMO
GISS None -- -- -- -- -- -- --
HAMMONIA None -- -- -- -- -- -- --
LMDREPRO None -- -- -- -- -- -- --
MAECHAM4/ CHEM 1960-2000 3D-6h-timeseries of chemical species, winds, T and p, 14CO tracer. Radicals important for budgets as daily averages (accumulated) Assimilated QBO Aerosol loading based on SAGE data; heating rates Kirchner et al.,1999 From Herzberg Institute of Astrophyscis Assimilated SSTs from Hadley Centre for Climate Prediction and Research IPCC A2 WMO (2003)
SOCOL 1975-2000 Monthly mean fields plus daily fields of main dynamical variables NO Aerosol loading for 1975-2000 based on GISS data set Combination of Lean’s data & PMOD/WRC reconstructions Assimilated SST/SI Observed (CMDL) Observed (CMDL)
ULAQ 1970-2000 Dynamics: instantaneous fields every day. Chemistry: 10 days averaged fields NO On-line  microphysics model as a function of injected SO2 NO Assimilated SSTs from Hadley Centre for Climate Prediction and Research IPCC A2 WMO (2003)
UMETRAC 1975-2000 Monthly mean field plus some daily fields Internally generated NO NO AMIP IS92a WMO (1999)
UM SLIMCAT 1978-2000 Daily fields of main dynamical variables and instantaneous chemical  fields every 10 days Internally generated Aerosol loading based on SAGE data (81-99) in chemistry only NO AMIPII plus extension IPCC A2 WMO (2003)
UMUCAM 1978-2000 Daily data on pressure levels NO NO NO AMIP II 1990 conc. 1990 conc.
WACCM1b/ MOZART3 1950-2000 Monthly-mean fields. Full chemical suite from offline MOZART3 NO NO NO Modified Reynolds IPCC WMO
WACCM3 None -- -- -- -- -- -- --


References.

Anderson, J.L., et al., 2004: The new GFDL global atmosphere and land model AM2/LM2: Evaluation with prescribed SST simulations, J. Climate, in press.

Austin, J., A three-dimensional coupled chemistry-climate model simulation of past stratospheric trends, 2002: J. Atmos. Sci., 59, 218-232.

Austin J. and N. Butchart, 2003: Coupled chemistry-climate model simulation for the period 1980 to 2020: ozone depletion and the start of ozone recovery, Q. J. R. Meteorol. Soc., 129, 3,225-3,249.

Beagley, S.R., J. de Grandpré, J.N. Koshyk, N.A. McFarlane, and T.G. Shepherd, 1997: Radiative-dynamical climatology of the first-generation Canadian Middle Atmosphere Model. Atmos.-Ocean, 35, 293-331.

Braesicke, P. and J. A. Pyle, 2003: Changing ozone and changing circulation: Possible feedbacks?, Geophys. Res. Lett., 30(2), 1059, doi:10.1029/2002GL015973.

Braesicke, P. and J.A. Pyle, 2004: Sensitivity of dynamics and ozone to different representations of SSTs in the Unified Model, Q. J. R. Meteorol. Soc., 130, 2,033-2,046.

Burgess, A.B., R.G. Grainger, A. Dudhia and V.H. Payne, 2004: MIPAS measurement of sulphur hexafluoride (SF6), Geophys. Res. Let. 31, L05112, doi:10.1029/2003GL019143.

Dameris, M., V. Grewe, M. Ponater, R. Deckert, V. Eyring, F. Mager, S. Matthes, C. Schnadt, A. Stenke, B. Steil, C. Brühl, and M. Giorgetta, 2004: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcings, in preparation.

de Grandpré, J., J.W. Sandilands, ,J.C. McConnell, S.R. Beagley, P.C. Croteau, and M.Y. Danilin, 1997: Canadian Middle Atmosphere Model: Preliminary results from the chemical transport module, Atmos.-Ocean, 35, 385-431.

de Grandpré, J., S.R. Beagley, V.I. Fomichev, E. Griffioen, J.C. McConnell, A.S. Medvedev, and T.G. Shepherd, 2000: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model, J. Geophys. Res., 105, 26,475-26,491.

Egorova, T., E. Rozanov, E. Manzini, M. Haberreiter, W. Schmutz, V. Zubov, and T. Peter, 2004: Chemical and dynamical response to the 11-year variability of the solar irradiance simulated with a chemistry-climate model, Geophys. Res. Lett., 31, L06119, doi:10.1029/2003GL019294.

Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, , 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Clim., 11, 1131-1149.

Langematz, U., J.L Grenfell, K. Matthes, and M. Kunze, 2004: Chemical effects in 11-year solar cycle simulations with the Freie Universitaet Berlin Climate Middle Atmosphere Model (FUB-CMAM-CHEM), Geophys. Res. Lett., submitted.

Manzini, E., B. Steil, C. Brühl, M. Giorgetta, and K. Krüger, 2003: A new interactive chemistry climate model. 2: Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases: implications for recent stratospheric cooling, J. Geophys. Res., 108(D14), 4429, doi:10.1029/2002JD002977.

McLinden, C. A., S. C. Olsen, B. Hannegan, O. Wild, M. J. Prather, and J. Sundet, 2000: Stratospheric ozone in 3-D models:  A simple chemistry and the cross-tropopause flux.  J. Geophys. Res., 105, 14,653-14,665.

Nagashima, T., M. Takahashi, M. Takigawa, and H. Akiyoshi, 2002: Future development of the ozone layer calculated by a general circulation model with fully interactive chemistry, Geophys. Res. Lett., 29 (8), 1162, doi: 10.1029/2001GL014026.

Pitari, G., E. Mancini, V. Rizi, and D. Shindell, 2002: Feedback of future climate and sulfur emission changes an stratospheric aerosols and ozone, J. Atmos. Sci., 59(3), 414–440.

Rozanov, E.V., M.E. Schlesinger, and V.A. Zubov, 2001: The University of Illinois at Urbana-Champaign three-dimensional stratosphere-troposphere general circulation model with interactive ozone photochemistry: Fifteen-year control run climatology, J. Geophys. Res., 106, 27,233-27,254.

Sassi, F.S., R.R. Garcia, B.A. Boville, and H. Liu, 2002: On temperature inversions and the mesospheric surf zone, J. Geophys. Res., 107 (D19), 4380, doi: 10.1029/2001JD001525.

Sassi, F., B.A. Boville, D. Kinnison, and R.R. Garica, 2005: The effects of interactive ozone chemistry on simulations of the middle atmosphere, Geophys. Res. Lett., submitted.

Schmidt, G.A., R. Ruedy, J.E. Hansen, I. Aleinov, N. Bell, M. Bauer, S. Bauer, B. Cairns, Y. Cheng, A. Del Genio, G. Faluvegi, A.D. Friend, T.M. Hall, Y. Hu, M. Kelley, N. Kiang, D. Koch, A.A. Lacis, J. Lerner, K.K. Lo, R.L. Miller, L. Nazarenko, V. Oinas, Ja. Perlwitz, Ju. Perlwitz, D.T. Shindell, P.H. Stone, S. Sun, N. Tausnev, D. Thresher, and M.-S. Yao, 2005a: Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite and reanalysis data. J. Climate, in press.

Schmidt, H., G. Brasseur, M. Charron, E. Manzini, M. A. Giorgetta, V. Fomichev, D. Kinnison, D. Marsh, and S. Walters, 2005b: The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-year Solar Cycle and CO2 Doubling. Manuscript submitted to J. Climate.

Steil, B., C. Brühl, E. Manzini, P.J. Crutzen, J. Lelieveld, P.J. Rasch, E. Roeckner, E., and K. Krüger, 2003: A new interactive chemistry climate model. 1: Present day climatology and interannual variability of the middle atmosphere using the model and 9 years of HALOE/UARS data, J. Geophys. Res., 108(D9), 4290,doi:10.1029/2002JD002971.

Takigawa, M., M. Takahashi, and H. Akiyoshi, 1999: Simulation of ozone and other chemical species using a Center for Climate Systems Research/National Institute for Environmental Studies atmospheric GCM with coupled stratospheric chemistry, J. Geophys. Res., 104, 14,003-14,018.

Tian W. and M.P. Chipperfield, 2004: A New Coupled Chemistry-Climate Model for the Stratosphere: The Importance of Coupling for Future O3-Climate Predictions Q.J. Roy. Met. Soc., in press.

Wong, S., and W. -C. Wang, 2003: Tropical-extratropical connection in interannual variation of the tropopause: Comparison between NCEP/NCAR reanalysis and an atmospheric general circulation model.  J. Geophys. Res., 108(D2), 4043, doi:10.1029/2001JD002016.

Wong, S.; W.-C. Wang, I.S.A. Isaksen, T.K. Berntsen, J.K. Sundet, 2004: A global climate-chemistry model study of present-day tropospheric chemistry and radiative forcing from changes in tropospheric O3 since the preindustrial period, J. Geophys. Res.Vol. 109, No. D11,doi:10.1029/2003JD003998.

 


Last modified: February 17, 2005
Restricted Area; Access only for participants of SCOUT-O3 Workpackage 1.1
by Veronika Eyring
Contact: Neal Butchart (email to N. Butchart) and Veronika Eyring (email to V. Eyring)