

Rayleigh-Brillouin Scattering Experiment with Atmospheric Lidar from a Mountain Observatory

Oliver Reitebuch, Christian Lemmerz, Engelbert Nagel, Benjamin Witschas

Institut für Physik der Atmosphäre

Challenges for atmospheric

lineshape measurements

 Up to now no direct measurement of Cabannes lineshape in the atmosphere performed; only indirect via wind or temperature measurement

- Challenging measurement because
 - difference between Gaussian and actual lineshape is only a few % (up to 10% at ground)
 requires to sample lineshape in the order of 100 points
 - width of line is in the order 4 GHz FWHM to 6 GHz (total) at 355 nm => sampling with 50 MHz or 21 fm = 21*10⁻¹⁵ m
- Measured lineshape is convolution of atmospheric spectra and instrumental function
 - => Instrumental function has to be known with high accuracy
 - => analysis with forward model or deconvolution is challenging for noisy measurements
- Small bandwidth aerosol contribution "contaminates spectra" significantly, because contribution is convoluted with instrumental function

Where measuring the Brillouin effect in the atmosphere?

- Measurement at a mountain observatory, because

 it is above aerosol-rich boundary layer especially during high pressure weather conditions in winter => no aerosol contamination
 possibility of horizontal line-of-sight measurement over distances of 20-30 km => horizontal averaging possible
- Mountain observatory Schneefernerhaus UFS is at 2650 m ASL and 300 m below Zugspitze summit => ambient pressure from 705 hPa to 730 hPa during campaign, which should be large enough to see Brillouin effect

• Only small Aerosol scattering disturbances will occur \rightarrow data of the German environmental agency (UBA) shows that the mean particle density on UFS is 500 p/cm³ compared to 60000 p/cm³ in the valley.

 Additional measurements from Microwave Radiometer of horizontal temperature profile and radiosondes from Innsbruck airport (30 km).

Institut für Physik der Atmosphäre

33rd Lidar Working Group, Destin (FL), 2-4 Feb 2010

BRillouin Atmospheric INvestigation on Schneefernerhaus BRAINS 2009

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

 Use ADM-Aeolus prototype lidar - the ALADIN airborne demonstrator A2D in horizontal pointing geometry with wavelength of 355 nm

 Use of molecular Rayleigh channel with Fabry-Perot interferometer to measure lineshape:

 drawback is very broad instrument function of 1.7 GHz compared to atmospheric width of 4 GHz (FWHM) or filter function of laboratory setup at VU Amsterdam with 0.23 GHz

Keep Fabry-Perot interferometer constant and change laser frequency in discrete steps over lineshape (calibration mode of ADM-Aeolus); monitor laser relative frequency with heterodyne unit and absolute frequency with wavemeter

Setup in laboratory together with H₂O-Differential Absorption Lidar DIAL of FZK/IMK (Trickl, Vogelmann) during a period of 6 weeks in January to March 2009
 More than 1000 kg of equipment was brought to the observatory by a cogwheel train

Horizontal LOS measurements of atmosphere and hard-target

 Horizontal lidar measurements in nearly pure Rayleigh atmosphere are performed, and therefore averaging over all range gates is possible => increase SNR (assumption that p and T is constant is verified with MTP)

 Hard Target measurements are possible over a range of 10 km to verify the instrument function with a Mie-type signal in addition to the internal reference signal

Institut für Physik der Atmosphäre

Sampling of the atmospheric lineshape and instrument function

- Atmospheric signal and internal reference for filter transmission is sampled with 240 frequency steps with Δf =50 MHz (21 fm) over a frequency range of 12 GHz (5.1 pm)
- 630 laser pulse returns with 60 mJ/pulse accumulated for every frequency step
- Some measurements were performed over 20 GHz with $\Delta f = 50$ MHz

How to compare measurements with models?

Ongoing PhD thesis by Benjamin Witschas to develop method and analyse measurements from BRAINS

- Develop accurate instrument function I(f) of the Fabry-Perot Interferometer => relevant for ADM-Aeolus
- 2) Atmospheric lineshape can be best modelled by Tenti S6: But this is an iterative algorithm, not a function, which can be analytically convoluted with instrument function in order to fit to measurements
- Calculate expected difference between convolution of instrument function I(f) with Gaussian lineshape G(f)*I(f) and lineshape from Tenti S6 T(f)*I(f) => "fingerprint" of Brillouin scattering
- 4) Calculate difference between measured lineshape M(f) and Gaussian G(f)*I(f)
- 5) Compare expected difference (3) or "fingerprint" with measured difference (4)
- → The deviation between Gaussian model and Tenti simulation is up to 5 % and has a characteristic "fingerprint".

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Is fingerprint of Rayleigh-Brillouin scattering measured?

in der Helmholtz-Gemeinschaft

• The deviations from measurement to Gaussian assumption and simulation with the Tenti S6 model to Gaussian assumption have the same characteristics.

→ The Tenti model describes molecular scattered light (from gas in the kinetic regime) quiet well.

→ We have measured the effect of Brillouin scattering in the atmosphere the first time!

Summary

- For the first time the lineshape from Rayleigh-Brillouin scattering was measured with high spectral resolution in the atmosphere
- Method to compare deviations of measurements from Gaussian lineshape and expected from Tenti S6 model was developed including convolution with instrument function
- Measurements confirm that the atmospheric lineshape deviates from a Gaussian as expected
- Lineshape and deviations can be modelled with Tenti S6
- As an important secondary result an accurate description of the instrument function of the sequential Fabry-Perot interferometer for ADM-Aeolus was obtained:
 - pure Airy-function is not sufficient to describe filter transmission
 - refinement of the model was performed including plate defects similar to an approach by McGill et al. (1997)

Next STEPS

• More than 50 spectral scans have been performed => analysis of spectra for different conditions, e.g. influence of Mie-scattering

Excellent location for meetings

o, Destin (FL), 2-4 Feb 2010