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Abstract. The purpose of this note is to estimate the accuracy and practical limitations of applying
linear theory at a critical level over a realistic range of atmospheric stabilities for an idealized
surface terrain. These estimates are made by comparing the results of a linear model with a nonlinear
numerical model at a critical level. Essentially similar results are obtained from each model for wave
stress, wave breaking height and wave dissipation through the critical level. Because gravity waves
can be either evanescent or internal depending on the relative sizes of the Scorer parameter and the
wavenumber of the ground surface disturbance, the somewhat paradoxical result develops that wave
breaking and non-linearity increase with increasing bulk Richardson number. It is recommended that
steady linear wave theory be used in gravity wave drag parameterizations provided near real time
profiles of background velocity and temperature are available.
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1. Introduction

The importance of the effects of gravity waves on almost all scales of geophysical
flows is widely recognized. One of the most important of these effects is the vertical
transport and deposition of wave-generated stress. Wave stress can be created when
a statically stable fluid flows over a surface terrain obstacle. Inviscid linear theory
predicts the stress to propagate upward with a constant value (Eliassen and Palm,
1960). For sheared flow, the wave stress will be attenuated at a critical level where
the wave horizontal phase speed equals the background flow velocity. The linear
theory cannot describe the attenuation process, but it is assumed that the wave
stress is transferred to the background flow through the generation of turbulence
in a layer immediately below the critical level. This wave-generated turbulence is
not accounted for in conventional turbulence theory; however, much work has been
directed toward the parameterization of this turbulence in numerical models (see,
for example, Kim and Arakawa, 1995; Fritts, 1984).

These parameterizations are almost always based on the linear theory. However,
linear theory is really only applicable when the wave amplitudes are sufficiently
small such that the products of wave quantities are negligible. Obviously, if the
wave amplitude grows so as to create an instability of the background flow, as is the
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case when a wave approaches a critical level, then it is not clear that the assumption
of linearity still holds. In such a case, when nonlinear terms become large, how
accurate are the wave quantities calculated with the linear theory?

The purpose of this note is to estimate the accuracy and practical limitations of
applying the linear theory at a critical level over a realistic range of atmospheric
conditions and surface terrains. These estimates will be made by comparing the
results of a linear theory model with a nonlinear numerical model at a critical level.
In Section 2, we highlight the behaviour of a gravity wave at a critical level. In
Section 3, we briefly describe the linear and the numerical models. In Section 4 we
describe the procedures of the calculations, and in Section 5 we present the results
of these comparisons. A discussion on the implications of these results is given in
Section 6, and in Section 7 we present our conclusions and recommendations.

2. Wave behaviour at a critical level

The result of linearizing the Eulerian equations governing atmospheric flow, making
the Boussinesq approximation, and assuming a horizontal wave structure for the
perturbations of the background flow is the Taylor-Goldstein equation:
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� ŵ = 0; (1)

where ŵ is the Fourier transform of the wave-induced vertical velocity, N(z) is
the buoyancy frequency, U(z) is the background wind, c is the horizontal phase
velocity, and k is the horizontal wavenumber of the wave, and the subscript indi-
cates differentiation. When U(zc) = c, Equation (1) becomes singular, and the
height zc is called a critical level. The behaviour of a gravity wave at a critical
level has been studied extensively by theoretical means; however, relatively few
laboratory studies have been performed (Thorpe, 1981; Koop and McGee, 1986;
Delisi and Dunkerton, 1989), and even fewer direct observations in the atmosphere
and oceans (Merrill and Grant, 1979; Worthington and Thomas, 1996). Booker
and Bretherton (1967) used linear inviscid theory to demonstrate that as a gravity
wave propagates through the critical level, its amplitude is reduced by a factor
exp

n
�2�(Ric � 0:25)1=2

o
, where Ric(> 0:25) is the Richardson number at the

critical level. Hazel (1967) extended this analysis to include the effects of viscosity
and heat conductivity, thus removing the singularity at the critical level. He recov-
ered the same attenuation factor as for the inviscid case, but more significant is the
result that “viscosity is important only in a critical layer around the critical level, a
layer thicker below the critical level than above it (for upward propagating waves)”.
The viscous length scale is defined by z� = (�=kUz)

1=3 where � is the fluid vis-
cosity, andUz is the background wind shear at the critical level. The total thickness
of the critical layer is estimated to be about 7 z� , with 5 z� lying below the critical
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level. Hazel (1967) shows that for the atmosphere and a wave of horizontal length
of 10 km, z� is about 1 m. The inviscid theory predicts a discontinuous reduction
of wave amplitude across the critical level, but the viscous theory predicts a linear
decrease in wave amplitude through a layer of thickness several z� .

Thorpe (1981) compares laboratory experiments with an inviscid, non-diffusive,
weakly nonlinear wave model. The waves are produced in the accelerating flow of
a stratified fluid in a long tilted tube in which the lower boundary has a sinusoidal
corrugation. The numerical model is used to provide information on the velocity
distribution that cannot be measured easily or accurately in the experiments. Model
verification or accuracy is assumed when there is agreement between the model
results and the measured quantities such as wave amplitude and phase. Experimen-
tal results indicate that fluid viscosity acts to inhibit Kelvin-Helmholtz instability
near the critical level. They observe that for mean flowRi � 1:5, the waves become
distorted from the linear theory solution profile. The second-order terms account
for much of the distortion until Ri � 0:5 in the accelerating flow or until overturn-
ing becomes imminent. They use the numerical solution to calculate local Ri, and
use these values to define regions of either dynamic or convective instability.

It is clear that the physics of the wave-turbulence exchange process at a critical
level are complicated, and beyond the scope of linear theory. In a parameterization
of the transfer of stress between a wave and the mean flow, it is necessary to
calculate not only the wave stress but also the distance over which the stress is
dissipated, i.e. the thickness of the layer of largest stress divergence. Inviscid linear
theory, which we wish to use, can be used to calculate the distance, zc � zbreak

from the critical level where wave breaking first occurs. For example, we define
zbreak as the height where the total horizontal velocity is zero; note this is also the
height where the flow streamlines become vertical. We can then assume that the
wave stress decreases linearly from there to the critical level, and that the stress
at the critical level is some fraction of its initial value. However, this assumption
must be tested, and this is done in our study.

3. Numerical and linear models

In this section we give brief descriptions of the numerical and linear models used in
the study. Because we evaluate the linear model relative to the nonlinear numerical
model, we show first some comparisons of the numerical model with laboratory
results. These comparisons serve to validate the numerical model.

3.1. LINEAR WAVE MODEL

The linear model solves Equation (1) with c = 0 since the surface-generated
gravity wave is stationary relative to the ground surface. The bottom boundary
condition is ŵ = kU(0) sin(kx), and at the top of the model we impose the
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radiation condition, i.e. only upward propagating wave energy. The horizontally-
averaged wind and temperature profiles calculated by the numerical model are
used as the input background profiles for the wave model at a given time. Details
of the calculations and treatment of the critical level are described in Nappo and
Chimonas (1992); however, in the present case integration over a range of horizontal
wavenumbers is unnecessary because the wave forcing is at a single wavenumber
k = 2�=�.

3.2. NUMERICAL MODEL AND COMPARISON WITH A LABORATORY EXPERIMENT

The numerical simulations consider a two-dimensional (x; z) shear flow in a ther-
mally stratified fluid with constant buoyancy frequencyN2 = g=#0 d�=dz, where
�(z) is the mean part of the total temperature profile # = #0 + � + �, and #0
is a reference temperature at the ground surface. The numerical scheme integrates
the full primitive equations of motion in their non-hydrostatic form as a function
of time. The Boussinesq approximation is employed. Additionally, we solve an
equation for the temperature fluctuations as an appropriate form of the first law of
thermodynamics. A gravity wave is excited by flow over a sinusoidal ground sur-
face with wavelength� and amplitude �. The domain size in the horizontal direction
is � and the height is H . Details of the equations and the numerical scheme are
given in Dörnbrack et al. (1995). A further application to the three-dimensional
gravity-wave critical-level interaction is presented in Dörnbrack (1996).

Dörnbrack et al. (1995) presented a comparison of preliminary model results
with observations of the laboratory experiment of Thorpe (1981). There, the initial
velocity distribution and the mean temperature field were prescribed by

U(z) = S (z � 0:5H) ;
�(z)

#0
=
��

#0

(z � 0:5H)
H

; (2)

where the dimensionless temperature gradient was ��=#0 = N
2
H=g and the

mean shear S was calculated by means of S = N
2
t� sin�0 (Thorpe, 1968). The

values of the buoyancy frequency N , the tilting angle �0, and the time of tilting
t� were taken from the data of Figure 4 of Thorpe (1981). Thus, Dörnbrack et al.
(1995) did not consider the actual tilting process. They initialised the numerical
model with the already fully developed flow profile and consequently they must
correct the time scale of the simulation by the value of t� in order to compare their
results with the findings of Thorpe (1981).

Here, we present new results of the same case in which the correct process
of tilting is taken into account. The tube is tilted down to an angle �0 = 7:06 �

for a period of 0.503 s, is kept at this position for 3:480 s, and is returned to
the horizontal position in 0.345 s (personal communication by Thorpe, 1994).
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For simulating the tilting, the buoyancy term �=#0�3i in the momentum balance
(Equation 4 in Dörnbrack et al., 1995) takes now the form�
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where we approximate the tube tilting by a time dependent angle�(t) according to
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�

=) t2 � t � t3 = 4:328 s :

(4)

As in Dörnbrack et al. (1995), the initial velocity and temperature fluctuations are
set to zero and the same numerical resolution (200x128 grid cells) and the same
boundary conditions are used.

We compare our results with observations of Thorpe (1981) in Figure 1. In
the observations, layers of constant density were marked by adding dye. Initially,
these layers have an equal thickness depending on the experimental set-up in the
laboratory. For a quantitative comparison with measurements, we plot the contour
lines of the temperature field in such a way that the thickness and position of
the areas between adjacent contour lines correspond to the black and white layers
documented in the photograph of the observations at t = 0 (Figure 1a). At the
beginning, the lines of constant temperature are horizontal, i.e., colder fluid is
lying in the trough and the fluid becomes warmer with increasing height. The
mean flow is towards the left near the bottom boundary and towards the right
at the top boundary. The overall features of the flow evolution in the laboratory
and in the numerical simulation are similar. The sinusoidal corrugations at the
bottom surface excite gravity waves that propagate vertically upwards (Figure
1b). The amplitudes of the waves increase with height, but fall to zero directly
beneath the critical level. No wavy motion is found above this level. Regions of
reduced vertical temperature gradients (characterized by thickening of the marked
layers) are mainly found above the trough of the surface wave (Figures 1c and d).
Because of the reduced temperature gradients, the local Richardson number drops,
and these regions become convectively unstable. These are the locations where
wave-induced advection puts colder fluid over warmer ones (Figure 1e) leading to
the wave overturning. Between these sites of instability the vertical temperature
gradient is enhanced and the black and white areas above the crest of the surface
become thinner, a structure similar to that found for Kelvin-Helmholtz instability.

A slight difference is seen between the observed and computed results for the
horizontal position of the white unstable region over the trough. As mentioned
before, this position is influenced by the momentum transfer between wave and
mean flow. The resulting acceleration of the mean flow depends on viscosity. The
lower the Reynolds number, the weaker the momentum transferred from the wave
to the mean flow in agreement with findings of Fritts and Geller (1976). Thus,
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Figure 1. Comparison with the observations of Thorpe (1981, Figure 4a,c,e,h,j). Left side: experi-
mental results at t = 0 s (a), t = 2:2 s (b), and t = 4:5 s (c), t = 7:9 s (d), and t = 10:2 s (e). Right
side: Results of the numerical simulation at corresponding times.
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a too large Reynolds number might be the reason for this deviation. Although
we have not used the same boundary conditions in the experiment (no friction),
excellent agreement with the observed flow patterns was obtained. Obviously, the
viscous friction at the top and bottom surface is of minor importance in this case
as discussed in Dörnbrack et al. (1995).

Baines (1995) describes two actions that can occur when a gravity wave encoun-
ters a critical level when U and N vary gradually with height and the Richardson
number is larger than one quarter. If the wave approaches the critical level slowly,
the viscous dissipation in the critical layer may be large enough to prevent explo-
sive wave growth and overturning. In this case, the wave never reaches the critical
level. However, if the wave approaches the critical level quickly, substantial wave
overturning occurs resulting in a homogeneous mixed layer. Our results suggest
that the latter action is taking place in the tank experiment of Thorpe and in the
non-linear model simulations.

4. Procedure

The numerical simulations we are going to discuss in the next section start with
the profiles given by Equation (2). The buoyancy frequency is N = 2 s�1 in all
runs, and the surface wavelength � = 2H . Because we vary the mean shear S, the
actual flow regime can be described in terms of a bulk Richardson number

RiB =
N

2

S
2 =

N
2
H

2

�U2 =
g��H

#0�U 2 ; (5)

and the dimensionless amplitude �=H of the surface wave. Table I gives an overview
of the parameters used in our simulations, and all eight cases are run for four values
of �=H = 0:005; 0:010; 0:015; 0:020. Because of the z-dependent velocity profile,
the Scorer parameter ` = N=jU j increases with height. The ratio


 =
k

`
; where k =

2�
�

(6)

determines the character of linear gravity waves. If 
 > 1, i.e. if the intrinsic
frequency U k is large compared to the buoyancy frequency N , the buoyancy
has little effect on the flow and the streamlines are in phase with the underlying
topography. These waves are called evanescent since their amplitude is decreasing
exponentially with height. For increasing stability, or similarly for decreasing flow
speed, the ratio 
 becomes less than one, i.e. the intrinsic frequency U k becomes
less than N , and the waves are able to propagate vertically. These waves are called
internal gravity waves. The surface value, 
S , of this ratio is important because
it characterizes the waves excited at ground. Because jU(z = 0)j = �U=2, the
surface value 
S can be easily derived from Equation (6) using Equation (5) as


S =
2��U=2

�N
=

s
RiIGW

RiB
; (7)
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Table I
Simulation parameters

Run �U (m s�1) RiB 
S zIGW =H

1 0.05 40.96 0.24 �1.54
2 0.10 10.24 0.49 �0.52
3 0.15 4.55 0.74 �0.18
4 0.20 2.56 0.98 0
5 0.25 1.64 1.23 0.09
6 0.30 1.13 1.47 0.16
7 0.35 0.84 1.72 0.21
8 0.40 0.64 1.96 0.24

where RiIGW � �
2
=(�=H)2 � 2:467 determines the lower limit for RiB above

which internal gravity waves are directly excited at the surface. Values of 
S are
listed in the third column of Table I. For RiB < RiIGW , or in other words if

S > 1, evanescent waves are excited at the bootom surface and the transition to
internal gravity waves occurs in the bulk of the fluid at heights

zIGW � 0:5H
�

1� 

�1
S

�
: (8)

This number is listed in the fourth column in Table I. All simulations are run until
t = 25 tref , where tref = H=�U .

5. Results

5.1. FLOW STRUCTURE

In this section, we describe the flow structures calculated by the numerical model.
This analysis is necessary for a better understanding of the flow physics and the
differences between the linear and numerical model results. Contour lines of #=#0

are plotted in Figure 2 for different values ofRiB at t = 25 tref , and �=H = 0:015.
Runs for smaller values of �=H did not show wave breaking. In all cases, wave
activity is seen below the critical level, and horizontal, almost undisturbed flow
above z � 0:5H . The temporal evolution of the flow shown in Figure 2 is similar
to that described in Section 3.2. Below the critical level, the dependence of flow
stability on RiB is clearly illustrated; the tendency for wave breaking increases
with increasing RiB . Also seen in Figure 2 is a sinking of the breaking level,
zbreak, with increasing RiB . Normally, we expect increasing flow stability with
increasing bulk Richardson number. However, when gravity waves are present and
a critical level exists, the flow stability becomes a complicated function of wave
perturbation amplitudes and mean flow quantities. As we have seen in the previous
section, when RiB > RiIGW , an internal gravity wave with the same amplitude as



LINEAR WAVE THEORY AT A CRITICAL LEVEL 407

the surface wave is excited, but when RiB < RiIGW , an evanescent gravity wave
with amplitude decreasing exponentially with height is excited. Near the critical
level,U(z) becomes small, and the Scorer parameter, `, becomes large. Eventually,
` becomes greater than k, and the wave switches to internal at z = zIGW , but now
the wave amplitude is much reduced from its original value. Because the wave
stress is quadratic in wave amplitude, the reduced wave interacts weakly with the
mean flow. The result is that the momentum transfer at the critical layer is a function
of the bulk Richardson number.

An indication of the different amounts of momentum that are transferred to the
mean flow is the position of the unstable region relative to the surface wave. In
Figure 2, it is seen that the region of instability is shifted towards the positive x-
direction with increasing RiB indicating an increasing wave-induced acceleration
of the mean flow below the critical level.

The dimensionless height of wave breaking zbreak=H at time 15 tref is plotted
as a function of bulk Richardson number, RiB , in Figure 3. For the linear model,
zbreak is determined as the height where the total velocity first becomes zero, and for
the numerical model zbreak is determined as that height where the flow streamlines
first become vertically orientated. These definitions are equivalent if we take the
total horizontal velocity as U + u

0 = d�=dz where � is the flow streamline. The
numerical and linear models both predict an approximately exponential decrease
of zbreak with increasing RiB . The linear model uses the vertical profiles of mean
velocity and temperature calculated by the numerical model at 15 tref. It is also seen
that as RiB approaches zero, zbreak approaches 0:5H , and that zbreak decreases
with increasing �=H for all RiB .

The flow structures at t = 25 tref for different values of �=H and for low and
high RiB are shown in Figure 4. As expected, the stronger excitation of gravity
waves due to higher surface wave amplitudes results in regions of increasing
instability, i.e., the separation between the contour lines becomes wider up to the
point when the flow becomes convectively unstable; clearly visible is the different
behaviour of the wave overturning for RiB = 0:84 and 10:24.

5.2. MOMENTUM FLUX NEAR THE GROUND SURFACE

In Figure 5, the dimensionless momentum flux, �S=�0�U
2, close to the bottom

surface is plotted for early and late times as a function ofRiB . Contributions to this
flux at height z are the resolved motions and the modelled fluxes of the frictional
stresses. The latter are set to zero in order to compare our results with the inviscid
linear theory. At undulated surfaces, however, pressure forces cause an additional
momentum flux. Therefore, we compute the mean vertical momentum flux per
unit volume � at constant coordinate � where � is the height in terrain-following
coordinates (see Dörnbrack and Schumann, 1993). Additionally, we take a mean
over the lowest 20% of the total domain height because the vertical profiles of
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Figure 2. Flow structure at t = 25 tref . Fixed �=H = 0:015. Parameter is the bulk Richardson
number RiB .
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Figure 3. Breaking height at t = 15 tref as a function of RiB for �=H = 0:015 and �=H = 0:020.
Symbols are results of the linear wave model. The lines are from the numerical model.

stress show a wavelike structure (see discussion of Figure 6 in Dörnbrack et al.,
1995).

The linear wave theory for uniform constant flow of magnitude �U=2 over a
wavy surface predicts (see, for example, Smith, 1979)

�S

�0�U2 = �
�

�

�

H

p
RiB �RiIGW for RiB > RiIGW : (9)

It must be noted, that for this shear-free situation the Richardson number RiB in
Equation (9) can be interpreted only as a value for the ratio 
 of Equation (7).
Equation (9) is only written in such a form for comparison purposes as �S depends
on RiB for the sheared case. It can be easily shown, that the vertical wavenumber

m =
p
`2 � k2 =

2
H

p
(RiB �RiIGW ) (10)

is imaginary for RiB < RiIGW , and the wave stress is zero. In the opposite case,
whenRiB > RiIGW the stress is quadratic in terrain height, and forRiB � RiIGW

is �S � 0.
Figure 5 shows the dependence of �S on RiB for early and late times in the

simulation. For the early time, Figure 5a, the stress is a positive exponential function
of RiB , for RiB less than about 10, with exponent n � 2=3. This suggests that

�S

�0�U2 / �
2
Ri

2=3
B : (11)

The linear wave model gives essentially the same results as the numerical model.
Unlike the case of uniform winds, the presence of a critical level ensures that there
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Figure 4. Flow structure at t = 25 tref for RiB = 0:84 (a) and RiB = 10:24 (b). Parameter is the
amplitude of the surface wave �=H .
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Figure 5. Surface momentum flux for different values of �=H as a function of RiB at an early time
t = 5:0 tref (top) and at t = 25 tref (bottom). Symbols are results of the linear wave model. The
lines are from the numerical model and their codings are: �=H = 0.005 (————), 0.010 (- - - - -),
0.015 (– – – –), 0.020 (– � – � –).

will always be some wave stress, i.e. there will always be some region below the
critical level where the gravity waves are internal. For later times, as shown in
Figure 5b, the simple relation Equation (11) is applicable to only small terrain
heights; however, it is seen that the linear model continues to follow the numerical
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Table II
Wave reduction at the critical level


S Ric Theory Linear Numerical

0.24 41 3:9 � 10�18 3:9 � 10�18 2:0 � 10�5

0.49 10 2:4 � 10�9 2:4 � 10�9 2:0 � 10�5

0.98 2.5 7:2 � 10�5 3:5 � 10�5 3:5 � 10�6

1.49 1.1 2:7 � 10�3 0 4:5 � 10�4

1.96 0.6 2:0 � 10�2 0 4:3 � 10�3

model. It has already been shown that wave breaking increase with increasingRiB ,
and this causes the complex behaviour seen in Figure 5b.

5.3. WAVE ATTENUATION ACROSS THE CRITICAL LEVEL

An important result of the linear theory is that as a gravity wave propagates through
a critical level its amplitude is attenuated by an amount

�+

�S
= exp

n
�2�

p
Ric � 0:25

o
(12)

where �+ is the wave stress above the critical level, and Ric is the Richardson
number at the critical level. If Ric is unity or larger, the attenuation is substantial,
for example 4 � 10�3 for Ric = 1 and 5 � 10�6 for Ric = 4. A comparison of
Equation (12) with the results of the linear and numerical model is presented in
Table II. In Table II, RiB is used in Equation (12) instead of Ric. Because we
use the mean profiles from the numerical model for the background conditions of
the linear model, Ric can be different from RiB . In the numerical model, �+ is
calculated as the mean between � = 0:5H and 0:6H . For large values of RiB , the
linear model agrees with Equation (12), but the numerical model does not. From
the discussion of Equation (7), it is seen that for this problem the gravity wave is
evanescent near the bottom boundary when RiB is less than about 2.5. Thus, for
low values RiB the internal wave amplitudes are small below the critical level,
and are essentially zero above the critical level. The numerical model shows a
different behaviour, i.e., relatively constant attenuation for large RiB , and greater
attenuation than the linear model for small values of RiB .

When wave breaking occurs in the numerical model, the surface on which
the total horizontal velocity is zero becomes convoluted and folds back on itself.
Then the locations of the critical level and the values of Ric are not well defined.
However, using the calculated values of wave attenuation an equivalent value,Rice,
of Ric can be estimated from Equation (12). Figure 6 shows the plots of Rice as
functions of RiB for dimensionless times of 5, 10, and 25. For early times (Figure
6a), Rice is essentially independent of the amplitude of the surface wave, and
weakly dependent onRiB . Consideration of Equation (11) and Figure 5 shows that
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this behaviour is expected for early times before the onset of wave breaking. As
time increases (Figure 6b), nonlinear effects begin to be seen, as indicated by an
increased sensitivity of Rice to �=H . Finally, at the end of the simulation (Figure
6c), the non-linearity dominates, and the linear estimates of stress attenuation no
longer apply.

6. Discussion

The purpose of this study was to evaluate the utility of linear wave theory in
estimating gravity-wave generated stress and wave dissipation near a critical level.
We have compared the results of a linear gravity-wave model with those obtained
from a numerical simulation of laboratory flow experiments. We have provided
evidence that the numerical model accurately reproduces the qualitative features of
the Thorpe (1981) laboratory experiments, and more details of these simulations are
given in Dörnbrack et al. (1995). Because of the limited measurement capability
of the laboratory experiments, a quantitative analysis of wave stress and stress
divergence is not possible. However, we feel that the numerical results are valid,
and accurately reproduce the details of the laboratory flows. Whether the laboratory
experiments or the simulations apply to the atmosphere remains uncertain.

Accepting this, we have demonstrated that the linear model gives essentially
the same results as the nonlinear model when the time-dependent profiles of mean
horizontal velocity and temperature calculated in the numerical code are used for
the background conditions in the linear model. This is an important result because
the linear model is applicable only to a flow that is slowly changing in time.
Apparently, the gravity-wave structure in the numerical model (and by implication
in the laboratory tank) sets up quickly enough so that from the perspective of the
wave field the flow is nearly stationary. This observation has immediate impact on
the parameterization of gravity-wave drag in atmospheric flow models especially
at the meso- and microscale. For example, it can be argued that wave breaking
and flow deceleration several hundred metres above the ground surface may be so
rapid as to render linear theory inapplicable. This will most likely be the case when
the background profiles used in the linear model are obtained by observation, say,
an hour or more old. However, in a numerical model these background profiles
are available every time step, and these can be used in a stationary linear wave
model. Indeed, this approach has been used by Nappo and Andrén (1995) in
their parameterization of boundary-layer wave drag. The results presented here
suggest that wave drag parameterizations using linear theory and model-calculated
background profiles are valid.

Another interesting result of this study is given by Equation (11) and shown
in Figure 5a. In the atmosphere, the magnitude of the large-scale bulk Richardson
number is often in the range between 1 and 10, and so the exponential relation
given in Equation (11) might be a practical means of estimating the wave stress
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Figure 6. Wave attenuation in terms of the Richardson number Rice for different times t = 5:0 tref
(top), t = 10 tref (middle) and t = 25 tref (bottom). Line coding as in Figure 5.
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from scale or bulk parameters. From Figure 3, an exponential relation between
zbreak and RiB is possible. Then assuming complete wave absorption through the
critical layer (zc� zbreak), the stress divergence can be easily estimated. However,
this procedure might be limited to simple wavy surfaces.

7. Conclusions

A comparison between a steady linear wave model and a time-dependent nonlinear
numerical model has been performed for the case of a linear stratified shear flow
over a wavy surface when a critical level is present. Essentially similar results are
obtained from each model for wave stress, wave breaking height and wave dissipa-
tion through the critical level. Because gravity waves can be either evanescent or
internal depending on the relative sizes of the Scorer parameter and the wavenum-
ber of the ground surface disturbance, the somewhat paradoxical result develops
that wave breaking and non-linearity increase with increasing bulk Richardson
number. It is recommended that steady linear wave theory be used in gravity-wave
drag parameterizations provided near real time profiles of background velocity and
temperature are available.
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416 ANDREAS DÖRNBRACK AND CARMEN J. NAPPO

Kim, Y.-J. and Arakawa, A.: 1995, ‘Improvement of Orographic Gravity Wave Parameterization
using a Mesoscale Gravity Wave Model’, J. Atmos. Sci. 52, 1875–1902.

Koop, C. G. and McGee, B.: 1986, ‘Measurements of Internal Gravity Waves in a Continiously
Stratified Shear Flow’, J. Fluid Mech. 172, 453–480.

Nappo, C. J. and Andrén, A.: 1995, ‘A Parameterization of Subgrid Scale Gravity-Wave Generated
Turbulence in a Mesoscale Boundary Layer Model’, 11th Symp. on Boundary Layers and Turbu-
lence, 27–31 March, Charlotte, NC. American Meteorological Society, Boston, MA, 341–343.

Nappo, C. J. and Chimonas, G.: 1992, ‘Wave Exchange Between the Ground Surface and a Boundary-
Layer Critical Level’, J. Atmos. Sci. 49, 1075–1091.

Merrill, J. T. and Grant, J. R.: 1979, ‘A Gravity Wave – Critical Level Encounter Observed in the
Atmosphere’, J. Geophys. Res. 84, 6315–6320.

Smith, R. B.: 1979, ‘The Influence of Mountains on the Atmosphere’, Adv. in Geophysics 21, 87–230.
Thorpe, S. A.: 1968, ‘A Method of Producing a Shear Flow in a Stratified Fluid’, J. Fluid Mech. 32,

693–704.
Thorpe, S. A.: 1981, ‘An Experimental Study of Critical Layers’, J. Fluid Mech. 103, 321–344.
Worthington, R. M. and Thomas, L.: 1996, ‘Radar Measurements of Critical Layer Absorption in

Mountain Waves’, Quart. J. Roy. Meteorol. Soc. 122, 1263–1282.


