

Going by car, plane, coach or train? – Climate impact from passenger travel re-calculated

Jens Borken-Kleefeld International Institute for Applied Systems Analysis (IIASA) Laxenburg/Austria

with thanks to Jan Fuglestvedt & Terje Berntsen

Climate impact from transportation

- 1. Global impact from passenger travel on climate?
- 2. Impact per passenger-kilometer for each mode?
- 3. Impact from (European) vehicles on climate?
- 4. Impact from annual travel on climate?

...similar considerations hold for freight transport.

Remember:

- Climate change on shorter and longer time scales
- Values depend on metric used:
 => Future temperature response to emission

Warming from passenger vs. freight transport

• Total impact:

Passenger >> freight transport (all metrics and time horizons)

• Long-horizon:

Lower limit = CO₂ ratio = 60% passenger :40% freight

• Short-horizon:

Freight transport is cooling ⇔ Warming results from passenger transport only

• **Ratios** depend on time-horizon ⇔Mix of short-lived compounds

Climate impact from current global passenger travel

- Impact = short- and long-term change of atmosphere
- In addition to CO2 large contributions from ozone, clouds, sulphur, soot,
 - > both warming and cooling, with different time constants

Climate impact from current global passenger travel

- Impact = short- and long-term change of atmosphere
- In addition to CO2 large contributions from ozone, clouds, sulphur, soot,
 - > both warming and cooling, with different time constants

Climate impact per passenger-kilometer (global average)

- Long-term impact ≈ CO2 impact ≈ fuel efficiency per pass-km
- Short-term impact:
 - Planes: Strongly enhanced;
 - Cars, bus, 2/3-wheel: Increased by non-CO2 pollutants (ozone, soot)
 - Rail: Reduced by sulphur emissions from power plants

Distribution of annual travel budget	
	AVERAGE: 20'000 km/a
Urban	200 days * 30 km
Intercity	10 times * 500 km
Long-dist.	6 times * 1500 km

Compare the following vehicles for their climate impact (GWP₁₀₀)

Car: Small diesel car (Euro 4) or Gasoline SUV (Euro 4), **Plane:** Airbus A320 with occupancy of 80% (high) or 50% (low) **Train:** High speed train with German electricity, 50% occupancy; diesel intercity train with 30% occupancy

Different values on shorter time-scales Lower rail impact, when more regenerative fuels will be used.

Distribution of annual travel budget	
	FREQ. FLYER: 30'000+60'000 km/a
Urban	100 days * 50 km
Intercity	50 days * 500 km
Long-dist.	20 times * 3000 km

Compare the following vehicles for their climate impact (GWP₁₀₀)

Car: Small diesel car (Euro 4) or Gasoline SUV (Euro 4), **Plane:** Airbus A320 with occupancy of 80% (high) or 50% (low) **Train:** High speed train with German electricity, 50% occupancy; diesel intercity train with 30% occupancy

Different values on shorter time-scales Lower rail impact, when more regenerative fuels will be used.

Summary

Climate impact per passenger-kilometer

- Rail << Road/Air (all times & metrics)</p>
- > Air travel approaches car travel (at longer times scales)
- Little difference between modern gasoline or diesel cars,
 vehicle size and fuel efficiency are crucial.
- Specific impacts strongly depend on occupancy

Variation between modes:

- Factor 2 reduction potential for **current cars** available today
- Factor 3 reduction possible, when **bus and trains** used instead
- Biggest reduction potential in **long-distance** and **urban travel**.

Further needs / work:

- Calculate climate impact per region
- Personalise climate travel account

