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Cause and effect chain for impact of emissions
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What is radiative forcing (of climate change)?

Forcing is the

perturbation of
the planetary
radiation budget
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Why do we calculate radiative forcing?

1. Useful initial indicator of climate importance of transport-induced
changes in atmospheric composition

2. Convenient way to explore the impact and size of uncertainties, and to
compare results from different laboratories

3. Important “pre-cursor” to performing calculations with computationally-
expensive climate models

4. Widely used as a measure of climate change, for example, by the
Intergovernmental Panel on Climate Change

A negative forcing causes a cooling and a positive forcing causes a warming
— the size of the warming is related to the size of the forcing, and how
long the forcing lasts




Radiative forcing since pre-industrial times — “all” sources
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Radiative Forcing (W m2)

IPCC, 2007
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Issues in calculating transport radlatlve
forcing

Need to know what each mode of
transport emits and where it ’
emits it ’

CO, emitted by transport sectors is
o different (in terms of climate
impact) to CO, emitted by other
human act|V|ty

But there are many “non-CO,”
contributors from transport
sectors

Almost all of these are short-lived in
the atmosphere and hence
“patchy” and the forcing
depends on where the emission &
occurs -

They include many of the most
poorly understood radiative
forcing mechanisms

Borken et al. 2009




First attempt at a multi-sector summary for the present-day radiative
forcing of transport
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Aviation

Aviation Radiative Forcing Components in 2005
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Global Shipping Radiative Forcing Components in 2000
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Road transport A__L i
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QUANTIFYing the uncertainty in radiative forcing: 1

Impact of NO, (and other
short-lived gaseous)
emissions by transport on
radiative forcing — shows

ROAD

the effect of uncertainty in
atmospheric chemistry
models

[ Oslo CTM2
B T4

[ p-TOMCAT
B LMDz-INCA
C_JucCl

SHIP

The plot shows the net effect
... Including increases in
ozone, decreases in
methane, etc

AIR

Roughly a factor of two
difference between the
largest and the smallest.

Radiative forcing (mWm?)

Myhre et al, Atmos Environ,
(submitted)
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QUANTIFYing the uncertainty in radiative forcing: 2

Impact of particulates
(“aerosols”) from transport

sectors 50 -
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We show that these result from
assumptions on how black
carbon (“soot”) mixes with
other particles

Radiative Forcing (mW m-2)
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Balkanski et al. 2010 Atmospheric
Chemistry and Physics 10:4477-4489
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QUANTIFYing the uncertainty in radiative forcing: 3

Contrail radiative forcing
depends significantly on
assumptions about the shape
of ice crystals in the contrails
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to be submitted
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QUANTIFY (near) final radiative forcing estimate

We have quite high confidence
In the sign and size of the
ROAD (and RAIL) forcing.
Impact of black carbon on
clouds not yet quantified with
confidence

We have less confidence in the
SHIP forcing, due to the
uncertainties in calculating the
effect of sulphur emissions on
cloud

We have even less confidence in
the AIR forcing — difficult to
estimate the impact of
“aviation-induced cirrus” and
the impact of aircraft aerosols
on natural cirrus clouds
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Understanding how temperatures respond to these radiative forcings

Several groups within QUANTIFY (CNRM Toulouse, University of Reading
and DLR) used sophisticated climate models to study the effect of the
radiative forcings on temperatures

(We also made considerable progress in understanding how good
radiative forcing is at predicting global temperature response ...)

See also Jan Fuglestvedt’s talk, up next!




How does the pattern of radiative forcing map onto the pattern of

climate change?

Some transport related
radiative forcing
mechanisms (notably CO,
and methane) are global in
extent

RF [W/m?]

RF [W/m?]

Others (e.g. ozone changes
and contrails) are restricted
to the hemisphere in which
the emissions occur — i.e.
normally the northern
hemisphere

RF [W/m?]

RF [W/m?)

Plots show the pattern of
climate response due to
various AIR forcings — if the
forcing is in only one
hemisphere, so too is most
the response
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Response to transport-related ozone forcings

The response to ozone forcings are mostly found in the northern
hemisphere (whereas the “opposing” methane forcing is in both
hemispheres)

The response to AIR ozone changes is more constrained to the northern
hemisphere, than for SHIP, due to differences in where emissions occur
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Coupled ocean-atmosphere model calculations of the climate effect of
aviation emissions

The CNRM climate model was CO, effects non-CO, effects

used’ together W|th L Surface (2m) air temperature . AL Surface (2m) air temperature

information on past and 2 oo L B
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Summary

ROAD:

1. Net forcing is strongly positive

2. CO,, ozone, HFCs/CFCs and black carbon aerosols are the main contributors
3. Main uncertainty is climate response to black carbon forcing

SHIP:

1. Net forcing is negative

2. Positive forcing from CO, and ozone is more than offset by the negative forcings
from methane change, the direct sulphate forcing and the aerosol impact on
clouds, resulting in a net negative forcing

3. Main uncertainty is the size of the impact of aerosols on clouds

AIR:

1. The net forcing is “very likely” positive

2. CO,, ozone and aviation-induced cloudiness are the dominant positive forcings

3. Significant uncertainties on the size of the aviation-induced cloudiness and,
especially, the effect of aerosols on high-altitude ice cloud properties




Conclusions

ATTICA and QUANTIFY have provided comprehensive assessments of the
radiative forcing due to the transport sectors

The detail of the individual contributions from each sector will help inform
future decisions on various options (operational, technological, economic)
for mitigating emissions in the future

We have identified areas of particular uncertainty where more research is
necessary

We have improved understanding of how reliable radiative forcing is as a
measure of climate impact, and helped understand how patterns of climate
change due to the transport sectors depend on the distribution of the
different forcings
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