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1 Introduction 

Advances in computation power have made it possible to explore increasingly complex algorithms to address the vexed 
question of how to convert radar reflectivity that is observed aloft into an estimate of rain rate on the ground. This year 
marks my thirtieth anniversary of the first time that I wrote computer software to solve this problem, so it occurs to me that 
now will be a good occasion to reflect on what I may or may not have learned in the process. The fundamental question that 
I want to explore is "If some is good, is more better?" In the context of radar rainfall estimation systems, it is instructive to 
understand both the benefits and the costs of using increasingly complex algorithms.  

The Australian Bureau of Meteorology operates a heterogeneous network of 70 weather radars that are located in a wide 
range of climates (tropics to mid-latitudes, rain forest to desert) and have a wide range of technical capabilities. 
Understanding the performance of a particular algorithm under increasing levels of noise and in a range of climates is 
therefore an important issue when considering how to optimize the performance of the radar rainfall estimation system.     

The Bureau developed a quantitative radar rainfall estimation (QPE) system Rainfields (Seed et al, 2007). Rainfields 2 
became operational in 2008, and testing has recently started for Rainfields3 following a review of the algorithms and system 
architecture.  Rainfields addresses the major components that are required for an operational QPE system and considers 
partial occultation, clutter identification, corrections for the vertical profile of reflectivity, and real-time adjustment against 
rain gauge observations (Chumchean et al, 2006). It became apparent during the review of these algorithms that much of the 
dogma that comes with QPE does not really stand up to close inspection for an operational QPE system.   

This paper will use issues that are related to the vertical profile of reflectivity and clutter identification to illustrate some 
points regarding these fundamental concepts and how they might be handled in a QPE system. A discussion on how the 
Bureau designed Rainfields3 to account for a heterogeneous network follows, and finally there are some concluding remarks.   

2 Managing complexity  

2.1 Vertical profile of reflectivity  

The impact of melting snow on radar reflectivity observations has been noted since the dawn on radar meteorology e.g. 
Byers and Coons (1947) and a great deal has been published since then on how to mitigate these effects for quantitative 
precipitation estimation. The simplest possible option is to ignore the problem entirely and this is not an unreasonable 
proposition for a radar in the tropics where the altitude of the bright band is around 5000 m ASL. The problem for Australia 
is that you can almost but not quite entirely get away with this option, and a solution becomes ever more pressing as you go 
south towards the mid-latitudes in the winter months, for example the bright band is typically below 1500 m ASL in winter 
for our most southerly radar.   

Typically six parameters are needed to describe the mean vertical profile of reflectivity (VPR), a reference reflectivity, the 
slopes below and above the bright band, the altitude of the bright band and two parameters to describe the shape of the bright 
band. The Bureau uses the following formulation for the VPR 
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where z0 is the reflectivity at the ground, hb is the height of the bright band, a and b are the slopes of the VPR below and 
above hb respectively, c is the intensity and d is the width (Snow et al 2012).  
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The radar reflectivity that is observed aloft is extrapolated onto the ground using the anisotropic Ordinary Kriging algorithm 
of Seed and Pegram (2001). This algorithm uses Ordinary Kriging to extrapolate a set of the the nearest non-clutter radar 
reflectivity bins onto the ground. The semi variogram accounts for the fact that the vertical structure of radar reflectivity is 
not the same as the horizontal structure and removes the bias that is caused by the VPR. The mean square error for the 
extrapolation is calculated and used to construct a quality index map that is used when combining the QPE products from 
several radars into a mosaic.  

Figures 1 and 2 show a daily rainfall accumulation of radar rainfall estimates with and without a VPR correction. It is clear 
that in this case the positive bias close to the radar has been reduced, but the negative bias at far range over the land has not 
been changed.  

 
Figure 1 Example of a daily accumulation of radar rainfall estimates with and without VPR correction 

 
Figure 2 Difference between daily accumulations of radar rainfall estimates with and without VPR correction and a gridded gauge ground 

"truth" 

If we assume for the moment that the mean vertical profile of reflectivity is a valid construct, then two practical problems 
become apparent. Firstly there is the problem of using radar observations to estimate the parameters in real-time. Typically 
this is done using observations that are "close" to the radar, which usually means the range where the diameter of the radar 
beam is significantly narrower than the height of the bright band and where the base scan is below the bright band, since 
only the slope of the VPR above the bright band can be reliably estimated at far range. There is also a problem of accurately 
determining the slope of the VPR under the bright band since it is not always possible to get clean radar reflectivity 
observations at low elevations due to ground clutter. An optimal solution is to simplify the model to using a forecast of the 
wet bulb freezing level from a Numerical Weather Prediction model and having fixed or slowly varying values for the other 
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parameters when it is determined that the errors from the fully parameterized model will exceed those from a constrained 
model.  

Secondly, there is the problem of only applying the correction to the cases where there is in fact a bright band since errors 
of the order of 3-5 dBZ can arise when "correcting" a profile of a convective cell that does not have a bright band. Figure 3 
shows an example of a situation where small winter convective showers were moving rapidly away from the radar. The 
apparent non-vertical structures are caused by the motion of the cells between the elevation scans in the volume. This 
illustrates that the vertical structure of radar reflectivity above a location on the ground is very noisy and the mean VPR only 
explains a small fraction of the observed variability. Therefore it is very difficult to detect the presence of a bright band 
reliably and the correction for the bright band is necessarily very noisy as a result.  

 
Figure 3 Example of a vertical cross section through a volume scan for the Brisbane Radar 

So in conclusion, it is very difficult to estimate the parameters of a VPR model reliably in real-time, the VPR only 
explains a small fraction of the observed variance in the vertical, and the VPR for a convective cell is significantly different 
from that of an area of stratiform rain. Despite all this, a VPR correction clearly improves the quality of long-duration 
accumulations of radar rainfall estimates and is worth doing, but what is an appropriate level of complexity in the model that 
is used to correct for the VPR?  

2.2 Clutter identification 

Peter et al. (2013) developed a Naïve Bayes Classifier (NBC) that was developed by to discriminate between anomalous 
propagation, sea clutter, and precipitation. This was further modified by Rennie et al. 2014 to include the classification of 
clear-air targets that provide radial velocity observations that are suitable for assimilating into a NWP model. The feature 
fields used in the classification included measures of texture of reflectivity and radial velocity, echo top height, reflectivity, 
and spectrum width. The Australian network does not have an operational dual-polarametric radar, and the older radars are 
reflectivity only.  

Table 1. List of the classes used for manual classification: Class number, class name and class abbreviations as used for 
figure labels, etc. 

Class number Class Class abbrev. 
1 Convective precipitation con 
2 Shallow convective precipitation shc 
3 Stratiform precipitation str 
4 Insects ins 
5 Smoke (bushfires) smk 
6 Chaff chf 
7 Macro-aerofauna (birds/bats) brd 
8 Permanent ground clutter pe 
9 AP ground clutter gc 
10 AP sea clutter ap 
11 Side-lobe sea clutter sl 
12 Second trip echo 2tp 
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Figure 4 Probability distribution of the spin feature field for the various classes. Rennie et al, 2014.  

 
Figure 5 Probability distribution of echo top height for the various classes. Rennie et al, 2014  

Table 6. Comparison of the Bayesian classification method with an existing threshold-based method, discriminating 
between precipitation and non-precipitation. 

  Bayesian    Thresholds  
  Automatic   Automatic 

M
an

ua
l  precip. non 

M
an

ua
l  precip. non 

precip. 94.4% 5.6% precip. 90.3% 9.7% 
non 23.5% 76.5% non 46.7% 53.3% 
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Verification of the Bayes classification scheme shows that it is an improvement on a very simple scheme for QPE that 
uses vertical gradient and echo top height thresholds to identify rain and reject all the other possibilities. The classification 
scheme was optimized to provide clean radial velocity observations to a data assimilation scheme, not to provide reflectivity 
to a QPE system. The impact of this rather subtle difference can be seen in Figure 6 where stratiform rain has been identified 
as "smoke". 

 
Figure 6 Example of a radar reflectivity field and associated target identification, Rennie et al 2014.  

This illustrates two points. Firstly, that it is very difficult to optimize a quality control system for both radar QPE and 
radial velocity applications and either a compromise or two parallel systems is required. The cost of managing two 
operational quality control systems is very high in terms of system complexity and human resources that are needed to 
manage and calibrate the two systems, so a compromise solution is required. Secondly, from a QPE perspective there is a 
modest increase in the average performance of the quality control system for rainfall at the expense of a very significant 
effort. The miss-classification of rain as say smoke does more harm to the QPE system than simply missing out on some 
shallow rainfall from time to time. Therefore the cost functions that are used when calibrating a radar quality control system 
need to reflect occasional errors that have a large impact on a specific application.   

3 Building a configurable QPE system 

When developing a QPE system it can be tempting to give almost exclusive attention to the implementation of the various 
quality control and product generation algorithms.  This work is of course critical, however it is by no means the only 
functional area to which focus must be applied.  There are three distinct functional blocks, or work-flows, for which a 
modern QPE system must take full account.  These are the areas of product life-cycle, production management, and product 
generation. 

The product life-cycle function is responsible for storage, retrieval, searching and eventual archive or removal of the 
various QPE products.  This function acts as the interface to both internal and external clients.  The production management 
function handles the computational resources needed for the timely generation of products including triggering, monitoring 
and dynamic scaling of the system.  Finally, the product generation function is responsible for implementation of all the 
scientific and engineering processes needed to take raw radar and rain gauge observations and produce high quality 
precipitation estimates. 

Each of these work-flows must scale independently as the system grows, and for this reason they should be implemented 
with a high degree of independence.  Product life-cycle functions must continuously scale as new products need to be stored 
and managed alongside those which are retained.  Production management must scale up as the network of radars and rain 
gauges expands or contracts.  Product generation must scale up as new technologies find adoption within the network, 
requiring continuous evaluation and innovation of quality control measures.  In Rainfields 3 each of these areas is 
implemented separately allowing the system to cleanly adapt as the situation in which it is deployed evolves. 
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In addition to changes over time, the system must also cope with a diverse range of radar technologies situated within a 
wide range of climate conditions.  In the Australian weather radar network there exists a mixture of C and S band radars, 
using 1, 1.5 or 2 degree antennas with non-Doppler, Doppler or dual-polarization receivers, scattered over approximately 30 
degrees of latitude.  The network is far too diverse to allow for a ‘one size fits all’ approach to the QPE algorithms, yet the 
sheer number of combinations represented makes building dedicated software for each situation infeasible. 

The approach used within Rainfields 3 is to split the QC and QPE processes into a collection of algorithmic building 
blocks which may be assembled in any combination and order to suit an individual radar.  Each building block, known as a 
‘stage’, is responsible for a single clearly specified part of the quality control process.  A single stage may implement a 
reasonably complex function, such as correcting for partial beam blocking, or a very simple function such as multiplying a 
field by a scalar.  Inputs for one stage are normally driven by the outputs from a previous stage, and in this way multiple 
stages are chained together to form a cohesive QC/QPE process customized to the needs of a particular radar.  In the current 
Rainfields 3 deployment a typical radar processing chain is comprised of over 50 stages. 

Although each stage is implemented within software, the configuration of the processing chain (including the linking of 
inputs and outputs, and setting of various adjustable parameters exposed by each stage) is read from an XML file.  This 
allows tracking and change management of the quality control and precipitation estimation processes independently from 
that of the software itself where updates are often more to do with quality of implementation than changes to the processing 
approach. 

To prevent the number of unique processing chain configurations required from suffering the same combinational 
explosion as would dedicated per-radar software, each stage provides default values for its configuration parameters.  These 
defaults are maintained and updated as a matter of course when quality control techniques improve.  In this way all radar 
configurations may benefit from improved parameter values without manual intervention. 

For radars where a default configuration parameter is unsuitable it may be overwritten on a per-radar basis.  Such updates 
are time stamped and tracked by the system, allowing the later regeneration of very long periods of products by seamlessly 
tracking the original changes in site configurations. 

4 Conclusions 

It is evident that there is a steady increase in the complexity of algorithms for radar rainfall estimation in the published 
literature. This is a result of the increasing power of computers to support ever more complex algorithms, and the natural 
bias towards complexity in our approach to research. "If some is good, then more is not better" when it comes to building a 
robust operational radar rainfall system, and Occam's razor, "Everything should be as simple as possible, but not simpler", is 
an important design concept that needs to be applied at each stage in the development of the QPE system. Gratuitous 
complexity comes at the cost of increased difficulty in calibrating the system and difficulty in understanding just how the 
system will perform in sub-optimal situations.  
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