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1. Introduction

The melting layer (ML) is an important feature of precipitation, frequently occurring during stratiform rainfall. It is associ-
ated with the melting of snowflakes/ice crystals below the freezing level. It can be seen on meteorological radar RHIs as a thin
nearly horizontal layer with a high reflectivity factor and low values of ρhv (copolar correlation coefficient). The high reflec-
tivity is due to the fact that ice crystals with liquid water at their surface behave as huge water drops in terms of reflectivity,
which depends on the sixth power of the drop diameter. The height of the ML gives an indication of the maximal height of the
stratiform rain and the altitude of the 0◦C isotherm.

The characteristic layer of high reflectivity caused by the ML is often refered to as a bright band. The bright band can bias the
estimation of the rain intensity and as such its automatic detection has always been an area of interest for radar meterorologists.
However, horizontal reflectivity is often not sufficient to detect the ML as small rainfall cells originating from the melting
layer can have a very strong reflectivity too. In addition, the bright-band in Zh is generally thicker than the melting layer and
algorithms solely based on Zh tend to be overestimating and unreliable.

Fortunately, the ML can be easily identified on polarization radars because it is characterized by a very distinct signature in
ρhv (Figure 1. This polarimetric variable is dependent on the heterogeneity in shape of the hydrometeors. In stratiform rain it
is generally high (≥ 0.95) due to the high homogeneity of rain droplets (Matrosov et al., 2007). In the ML, where a mixture of
rain and snow occurs it is distinctly smaller (0.7–0.95). In snow the copolar correlation coefficient is around 0.9. In addition,
the 0◦C isotherm is also characterized by a sharp increase in Zdr due to transition between solid phase where Zdr is usually
small (Doviak and Zrnić (2006), p.257) to liquid phase where it is higher. The ML generally appears larger on Zh than on Zdr

and ρhv . Typically the maximum in Zh will be at a higher altitude than the minimum in ρhv and maximum in Zdr. This is
due to the fact that Zh is maximal when the ice crystal start to melt, i.e. when they are still large but coated with a very thin
layer of liquid water, ρhv however is minimal when the mixture between ice crystals and drops is the most heterogeneous. This
happens at a lower altitude, when sufficient melting has already occcured.

Considering the great importance of the ML in stratiform rain, our aim is to gather more information about its statistics in
terms of polarimetric signature and geometrical shape. To achiveve this goal, we took advantage of the additional information
provided by dual-polarimetry and developped a new algorithm for melting layer detection on polarimetric RHI scans based on
the detection of strong gradients. We then used this algorithm to characterize the ML using a large dataset of radar scans from
different seasons and climatic regions (South of France, Great Plains, Swiss Alps).

2. Main Matter

2.1. Method

2.1.1. Algorithm

Instead of simply adapting an existing algorithm from PPI, we decided to design a new algorithm that works directly in RHI
by taking advantage of the fact that gradients in ρhv and Zh are usually stronger and better defined in vertical scans.

Our algorithm is based on a slightly different method than the one proposed by (Giangrande et al., 2007). We relied on the
presence of sharp edges in the polarimetric variables, especially in ρhv and proposed an automatic detection routine based on
detection of gradient maximas. The algorithm works in the following way:

1. The copolar correlation coefficient ρhv and the horizontal reflectivity Zh variables are first projected from polar to Carte-
sian coordinates.

2. Measurements at very low elevation angles (0 − 1◦) are removed in order to avoid possible interference from ground
clutter.

3. Both variables are then normalized in the range [0, 60] dB → [0, 1] for Zh and [0.75, 1] dB → [0, 1] for ρhv, in order to
give a weight of similar magnitude to both variables and to avoid detection of a ML in very weak stratiform situations.
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Figure 1: Exemple of the melting-layer signature in Zh, Zdr and ρhv in a typical stratiform rain situation in the south of France (29.09.2012
12:24) . The melting-layer is characterized by the combination of a layer of small ρhv values, a transition from high to low Zdr and the
presence of high values in Zh.

4. After a median filtering of both variables with a moving window of size 250 × 250 m2, the normalized variables are
combined into a single image:

IMcomb = Zh · (1− ρhv)

5. The gradient of the combined image in the vertical direction.

6. The image is scanned column by column (i.e. a vertical cut). The algorithm searches for negative and positive peaks in
the 1D gradient signal at each column that exceed a certain threshold Agrad, min (fixed at 0.01). If we consider the positive
axis to start from the ground, positive peaks in the gradient correspond to the lower edge of the ML and negative peaks
to the upper edge. If both an upper and a lower edge with sufficient intensity are detected, all pixels in between are
considered as belonging to the ML. If more than two pixels exceed the threshold, the pair with the strongest gradient
difference is retained. An additional check is done on the values of ρhv: if between the two detected edges, there is
no pixel lower than 0.95 OR any pixel higher than 0.6, the edges are considered as suspicious and removed. The first
condition comes from the fact that the ML is characterized by low values of ρhv and the non-detection of any low value
is very unlikely. The second conditions comes from the fact that values below 0.6 generally indicate the presence of
ground clutter or other non-meteorological echoes (biological scatterers or planes), as they are too low for precipitation.

7. The algorithm works in two consecutive steps: the method described above is first done without any additional integrity
check, which may lead on some occasions to pixels being misclassified due to the presence of strong edges caused by
the remaining ground clutter or by mistaking convective cells for the ML.The median height of the upper boundary of
the ML (MML,bot) and the median height of the lower boundary of the ML (MML,top) are computed at the end of this
preliminary step.

8. In the second step, the algorithm is run again but this time after cutting the gradient image above 1.3 ·MedML,top and
below 0.7 ·MedML,bot. The hard threshold on gradient intensity has still to be exceeded.

In a last step, small holes (less than 250 m which corresponds to the size of the median filter) are interpolated by piecewise
continuous spline interpolation.

2.1.2. Validation

The first parameter of importance is the threshold on the minimal value of the gradient for an edge to be considered. The
value of 0.01 was chosen by visual inspection as it was found out that this value is very rarely obtained in situations without
ML. It serves as a way to avoid considering edges of too low intensity. It was observed that this contraint does not negatively
affect the detection even for relatively weak ML situations.

The second parameter is the constraint on the relative height of the bottom and the top of the ML. In the algorithm it is
assumed that the bottom of the ML doesn’t fluctuate below 0.7 of the median bottom height and the top above 1.3 of the
median top height. To test the validity of this hypothesis, the top and bottom relative heights of the ML were computed for
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all time steps of the whole HyMeX campaign for a maximal distance from the radar going up to 20 kilometers, which is the
maximal range used in this work. It was shown that for a distance up to 20 kilometers, this assumption can be considered
as valid and is a reasonable way to limit the interference of ground-clutter, embedded convective cells or other perturbating
echoes (birds, planes,...). For higher distances, this may not be true due to the effect of beam-broadening leading to an increase
in the apparent thickness of the ML.

At last, the size limit for interpolation of holes (250 m) was confirmed by inspection of the distribution of hole sizes. It was
observed that 75% of all holes were smaller than 250 m and since this value is still reasonably small compared to the usual
length of the ML (15-25 km) it should not affect the overall estimation of the ML.

2.2. Results

Some examples of automatic detection of the ML are shown in Figure 2. It is difficult to assess directly the performance
of the algorithm as no references such as atmospheric soundings or altitude of the 0◦C isotherm are available. However, by
considering the transition in ρhv as the main indicator of the presence of the ML, it can be seen that in most cases the algorithm
accurately bounds the position of the ML. The algorithm may however not be very robust in strong convective cells, which are
characterized by values in ρhv similar to the ML. It also seems that the algorithm slightly underestimates the width of the ML,
as in some cases very low values of ρhv incompatible with rain can be found outside the detected ML boundaries.

Figure 2: Some examples of ML detection with the associated ρhv field, the detected ML is shown with a blue contour and white pixels
correspond to missing values (low signal/noise ratio or low elevations). We can see that the detected ML contours correspond very well to a
sharp transition to smaller values of ρhv , which is the kind of structures the algorithm is looking for.

The algorithm was used to compute various statistics on a large dataset (more than 10’000 time steps) of vertical radar
scans (RHI) obtained during several radar campaigns in different climatic regions and at different seasons, namely in Ardèche
(France), in the Great Plains (USA) and in Davos (Swiss Alps). In order to limit the effect of beam broadening which causes
a loss of resolution at increasing distances from the radar, only the first 5 kilometers from the radar were considered. No inter-
polation of the holes in the detected ML was done, in order to avoid introducing artifacts in the characterization. Additionally,
Zh and Zdr were corrected for attenuation in the liquid phase (below the detected ML) using the ZPHI algorithm (Testud et al.,
2000). We assumed that attenuation inside the solid phase (in ice clouds above the ML) is probably much smaller and could
be neglected (Doviak and Zrnić (2006), p.43).

The distributions of the radar variables Zh, Zdr, Kdp, ρhv and Sw were computed within the ML, above the ML (solid
phase) and below the ML (liquid phase). In addition, six variables linked to the geometry of the ML were computed (Table 1).
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MLBot,fluct

Relative fluctuations of the lower boundary of the ML in [m]. For each scan, the altitude of the bottom
of the ML at elevation 90◦ (horizontal distance zero from the radar) is used as the reference height:

MLBot,fluct(x) = MLBot(x)−MLBot(0)

MLTop,fluct
Relative fluctuations of the upper boundary of the ML in [m]. For each scan, the altitude of the top of
the ML at elevation 90◦ is used as the reference height.

MLThickness Thickness of the ML in meters.

γBot,fluct

Variogram of the relative fluctuations of the lower boundary of the ML. To exclude a potential linear
drift in the fluctuations with the horizontal distance, the variogram was calculated on the residuals of
a linear regression of fluctuations vs distance.

γTop,fluct

Variogram of the relative fluctuations of the upper boundary of the ML. To exclude a potential linear
drift in the fluctuations with the horizontal distance, the variogram was calculated on the residuals of
a linear regression of fluctuations vs distance.

γThickness

Variogram of the thickness of the ML. To exclude a potential linear drift in the fluctuations with the
horizontal distance, the variogram was calculated on the residuals of a linear regression of thickness
vs distance.

Table 1: Descriptors of the ML geometry
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Figure 3: Polarimetric signatures and geometry of the ML observed during the radar campaigns in Ardèche (France) in fall 2012
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Concerning the distributions of the different polarimetric variables within the ML and in solid and liquid phases (Figure 3),
let us first remark that horizontal reflectivities and differential reflectivites are both high inside the ML, close to respectively 37
dBZ and 1.2 dB. The solid phase is marked by significantly lower values in Zdr and Zh which is probably due to the smaller
size of solid hydrometeors, their smaller dielectric constant and their higher symmetry. Note that this would not be the case
in the presence of hail. In the ML, ρhv shows a strong mode around 0.93 and its distribution is much wider than outside of
the ML where, as expected, only high values are present. The fact that low values of ρhv are only present in the detected ML
shows that, on average, the algorithm seems to work reasonably well.

Concerning the geometry of the ML we observe that the distribution of the ML thickness shows a right-skewed distribution:
the ML can be much larger than on average but cannot be much thinner. Generally the ML doesn’t get much thinner than 200
meters. This minimal height could be related to the thermodynamics of water drops and the lapse rates in the atmosphere. By
looking at the variograms of the ML geometry, we can state that the fluctuations of the upper and lower boundary follow the
same trends with similar semivariances. Most fluctuations appear at small scale which shows that the structure of the ML is
essentially a flat horizontal layer with possibly a linear trend (not visible here due to detrending).
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Figure 4: Polarimetric signatures and geometry of the ML observed during the radar campaigns in Davos (Swiss Alps) in spring and summer
2010

For the Davos dataset we compared the characteristics of the ML for the spring and the summer 2010 (Figure 4). It appears
that both Zh as well as the thickness of the ML seem to be larger in summer. The fluctuations of the ML are also slightly larger
in summer but with a very similar tendency. It is still unclear why these differences occur and a thorough analysis will be made.
It might be possible that a small number of high intensity events occuring in summer bias the distributions. The statistics of
the ML seem quite close to the ones in Ardèche with a very similar distribution in thickness and shape of the variograms with
however a slightly weaker intensity.

The size of the Great Plains dataset is much smaller (only 72 timesteps) and the validity of a comparison with the other
datasets is quite limited. It appears however that the thickness of the ML is higher than in Ardèche and in Davos (Figure 5) but
this is probably related to the high average reflectivity.

Additional comparisons within and between the datasets will be made in the future in order to gain more information about
the ML variability.
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Figure 5: Polarimetric signatures and geometry of the ML observed during the IFLOODS campaign in Iowa (spring 2013).
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