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Abstract

On Doppler weather radars, the spectrum width is commonly estimated from a ratio of autocorrelation estimates at two different lags. These
estimators, referred to as pulse-pair processing (PPP), perform better and are computationally less expensive than frequency-domain estimators
based on the Doppler spectrum. PPP estimators have been used for decades on operational weather radars and have well known properties. For
example, out of all PPP estimators, the RO/R1 estimator, which is based on the ratio of lag-0 to lag-1 autocorrelations, performs the best for
wide spectrum widths but has poor performance for narrow spectrum widths and relies on accurate noise measurements. The R1/R2, which is
based on the ratio of lag-1 to lag-2 autocorrelations, and other estimators based on higher-lag autocorrelations provide better narrow spectrum-
width estimates than the RO/R1 estimator and improve performance when accurate noise measurements are not available, but they are severely
biased for wide spectrum widths. Thus, to provide better estimates over a wide range of spectrum widths, a few PPP estimators can be suitably
combined. This so-called hybrid spectrum-width estimator can take advantage of the best characteristics of each estimator for different regimes.
However, the performance of all PPP estimators degrades when the number of samples is small. This degradation is evident as a higher number
of invalid estimates (negative spectrum widths) and increased biases and variances for narrow spectrum widths. In this work, we propose a hew
class of PPP spectrum-width estimators that are based on “matched” autocorrelation ratios. Autocorrelation estimators are said to be “matched”
if they use the time-series samples in the same manner. When compared to conventional PPP estimators, the proposed estimators exhibit
improved performance for small numbers of samples. This is quantified and illustrated using simulations and real data collected with
operational WSR-88D radars.

1. Introduction

A category of spectrum width estimators used for Doppler weather radar which rely on a Gaussian shaped power spectrum are of the form
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where v, is the unambiguous velocity, Fi(st) is the autocorrelation at lag m with pulse repetition time (PRT) Ts, dmo is the Kronecker delta,

and m’ > m. These estimators are well documented and have known characteristics (see [1] — [17]). For instance, the &, (0, 1) estimator (often
referred to as the RO/R1 estimator) provides the best wide spectrum width estimates with the lowest variance over the widest range of spectrum
widths, but provides poor narrow spectrum width estimates. Whereas the use of higher lags in (1) (i.e., m’ >1) provide better narrow spectrum
width estimates with lower variance compared with estimators using lower lags, these estimators saturate quickly for wide spectrum widths.
Further, the use of higher lags for m (i.e., m > 0) in (1) are justified when the system noise power cannot be adequately determined despite the
fact that these estimators saturate less gracefully than the estimators that use FQ(O) with an accurate system noise. From (1), it is easy to see

that changes in the PRT have a similar effect on the performance of the estimators as do changes in the lag (i.e., larger PRTs provide better
narrow spectrum widths and smaller PRTs provide better wide spectrum widths). For these estimators, the quality of the estimates degrades
rapidly at low signal-to-noise ratios. Further, the performance of these estimators depends on sample size; performing better as the number of
samples increases. In practice, only the first few lags are used in these estimators.

To provide better estimates over a wide range of spectrum widths, the results of several estimators can be combined to take advantage of
the best characteristics of each estimator. These estimators are referred to as hybrid spectrum width estimators. As an example, a hybrid
spectrum width estimator has been implemented on the NEXRAD system that uses &, (0, 1) for wide spectrum widths, &, (1, 2) for medium

spectrum widths, and &, (1, 3) for very narrow spectrum widths [18]. Whereas hybrid spectrum width estimators exhibit an improved overall
performance, this improvement is limited to the performance of the individual estimators available for selection. In this work we propose a hew
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set of spectrum width estimates based on “matched” autocorrelation estimates that exhibit improved performance over the classical estimators
in (1). Thus, when combined in a hybrid approach, they result in even greater improvement to spectrum width estimation for weather radars

2. “Matched” Autocorrelations

As mentioned before, classical spectrum width estimators are based on ratios of the autocorrelation function at different lags. Thus, their
performance depends not only on the individual autocorrelation estimator but also on how the time-series data is used in both autocorrelation
estimators. We have found that the performance of the classical spectrum width estimators improves when the autocorrelation estimators in the
ratio are “matched”; i.e., when both estimators use the time-series data with the same frequency and weights.

Autocorrelation estimators based on the Autocorrelation Spectral Density (ASD) [19] are naturally “matched”. For example, the lag-1 ASD
estimator is formed by combining two complex spectra Fq and F; {see (2.1) and (2.2) of [19]}, and the Power Spectral Density (PSD) can be
obtained from the same complex spectra as the average of their magnitudes squared [20]. Note that both spectral densities have the same
frequency resolution (i.e., they are “matched”). It can be shown that the sums of the coefficients of two spectral densities provide “matched”
autocorrelation estimates for lags 1 and 0, respectively. Fig. 1 illustrates this process. That is, the lag-1 ASD, S, (k), and its “matched” time-

averaged modified periodogram, S;(k), are both formed by combining two complex spectra Fo and F; (2).
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Fig. 1. Time series of M complex received voltages are divided into two (M — 1) subsamples: V, and V;. A data window is applied and the
discrete Fourier transform (DFT) is taken to create Fo and Fy, respectively.
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In the following equation, the lag-l autocorrelations and their “matched” lag-0 autocorrelations are given explicitly to show that the complex
voltages (V) comprising the autocorrelation pairs are used with the same frequency and weighting.

Lag-l "Matched" Lag-0
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3. Proposed Spectrum Width Estimators and Comparisons
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The proposed spectrum width estimators are realized by using “matched” autocorrelation estimates in (1). As examples of performance, we
compare standard spectrum width estimators (1) used in the WSR-88D, &, (0, 1), &, (1, 2), and &, (1, 3) to the proposed estimators, &, (0%, 1),

G, (0% 2), and 0, (0%, 3) using “matched” autocorrelations (where the superscript of 0' indicates the “matched” autocorrelations to the lag-I

autocorrelation). For these comparisons a 20 dB signal-to-noise (SNR) simulated weather signal with 64 samples is used for 5 velocities
spanning the Nyquist interval from 0 to 26.3 m s with 1000 realizations at each true spectrum width of 0.1 to 15 m s™. A 2-D histogram
displays the results in a logarithmic color scale as a percentage of the total realizations (5,000) from 0% (blue) to 100% (maroon). The x-axis is
the true spectrum width and the y-axis is the estimated spectrum width.

Shown in Fig. 2 is the comparison of the standard estimator, &, (0, 1) (left), to proposed estimator, &, (0%, 1) (right). A common occurrence

for (1) is that a meaningless value is obtained when the magnitude of the numerator is smaller than the magnitude in the denominator. In this
case, the output of the estimator is assigned a 0 m s™* value. When comparing the standard (large red arrow in left image) to the proposed (large
green arrow in right image) estimator at narrow spectrum widths, it is seen that the standard estimator has more occurrence of 0 m s™ values
than does the proposed estimator. Additionally, the standard estimator has a larger dispersion of estimates (small red arrows in left image) than
does the proposed estimator (small green arrows in right image). This is evident in the lower colors of yellow and orange in the left image as
compared to the concentration of reds along the 0-bias line in the right image where true and estimated spectrum widths are equal. At larger
spectrum width values, the standard estimator and the proposed estimator perform similarly.
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Fig. 2. 2-D histograms of true (x-axis) to estimated [y-axis, &, (0, 1) (left) to g, (0%, 1) (right)] spectrum width for 5,000 realizations of a 20

dB SNR simulated weather signal. The logarithmic color scale displays the percentage of the total realizations (5,000) from 0% (blue) to 100%
(maroon). The large arrows (bottom of figures) indicate a breakdown in the estimator where meaningless values are assigned 0 ms™. The
smaller arrows indicate the spread (variance) of the output estimates.

Shown in Fig. 3 is the comparison of the standard estimator, &, (1, 2) (left), to proposed estimator, &, (0%, 2) (right). Similar to the

comparisons in Fig. 2, narrow spectrum widths biases (large red arrow in left image) and increased variance (small red arrows in left image) are
seen in the standard estimator as compared to the proposed estimator (like green arrows in right image). An additional anomaly is revealed
when using autocorrelation lags higher than lag-0 in the numerator of (1): the estimator provides narrow spectrum width outputs for large true
spectrum widths inputs. This is seen in the standard estimator for true spectrum width values above ~7 m s with corresponding output values

as low as 0 ms™. In this case, we will say that the standard estimator saturates poorly and the proposed estimator is seen to saturate more
gracefully.
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Fig. 3. Same as Fig. 2 except comparing &, (1, 2) (left) to &, (0%, 2) (right). Additional to the large arrows (bottom of figures) that indicate a

breakdown in the estimator and the smaller arrows (pointing toward each other) that indicate the spread (variance) of the output estimates,
another small arrow (right of center) is added to indicate the saturation effects of the estimators.

Shown in Fig. 4 is the comparison of the standard estimator, &, (1, 3) (left), to proposed estimator, &, (03, 3) (right). Similar to the

comparisons in Fig. 3, narrow spectrum widths biases (large red arrow in left image), increased variance (small red arrows in left image), and

poor saturation effects (small red arrow right of center) are seen in the standard estimator as compared to the proposed estimator (like green
arrows in right image).
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Fig. 4. Same as Fig. 3 except comparing &, (1, 3) (left) to g, (0%, 3) (right).
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4. Application to WSR-88D Data
4.1 Comparison of estimators

The performance of the proposed spectrum width estimators can be seen in comparison to the standard spectrum width estimators by
processing unfiltered data collected from an operational WSR-88D radar. For this example, data collected on March 18, 2008 with a standard
volume coverage pattern (VCP) 12 at an elevation angle of 0.5°; 16 samples per dwell at a PRT of 3.107 ms were processed for unfiltered
reflectivity estimates, and 44 samples per dwell at a PRT of 0.987 ms (v, = 26.1 ms™) were processed (independently) for unfiltered Doppler

velocity and spectrum width estimates. In Fig. 5, unfiltered reflectivity (left) and velocity (right) plan-position-indicator (PPI) displays show
stratiform rain north of the radar.
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Fig. 5. Reflectivity (left) and velocity (right) PPI displays from WSR-88D radar on March 18, 2008.

In Fig. 6, PPI displays of the &, (0, 1) (left) and &, (0%, 1) (right) are shown. The color scale has been altered to display blue for spectrum

width estimates of 0 m s™ to highlight those regions where meaningless values occur. In this case, the standard estimator on the left shows more
zero values than does the proposed estimator on the right. Additionally, both estimators perform similarly for wide spectrum widths as seen in
the upper and lower portions of the displays. Recall from the introduction that for wide spectrum width values, these estimators are the best.
Although difficult to establish from the images, the proposed estimator seems to have less bias and appears smoother for narrow spectrum
width values. The performance of these estimators is as expected from the discussion related to the simulation results in Fig. 2. Narrow
spectrum width recovery is even better in Fig. 7 where PPI displays of the &, (1, 2) (left) and &, (0% 2) (right) are shown; however, note that

the wide spectrum width values are not properly represented by either estimator as seen by comparing the high spectrum width regions along
the top and bottom of the PPI displays in Fig.6 to those in Fig. 7 where lower values are observed for the same regions. Even so, the standard
estimator is seen to produce near-zero values for very high spectrum widths due to the estimators saturation effects. The best narrow spectrum
width values of those tested come from the estimators in Fig. 8, where PPI displays of the &, (1, 3) (left) and &, (0%, 3) (right) are shown;

however, note that there are less high spectrum width values than previously seen in Fig. 6. That is, both estimators provide biased high
spectrum width estimates as expected from the analysis of these estimators in 3 (see Fig. 4). Still, improvements in narrow spectrum width
recovery are better in the proposed estimator.

4,(0, 1) g,(01, 1)

“B 00 0% DS Y0 TH 29 28 30 35 43 48 S0 65 80 A5 TR VS e o 08 0O B3 %0 t5 20 25 30 35 40 45 50 85 M0

570 TH e

Fig. 6. Spectrum width PPI displays of &, (0, 1) (left) and &, (0%, 1) (right). The blue color is where the estimate output is set to 0 ms™.
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Fig. 7. Same as Fig. 6 except spectrum W|dth PPI displays of &, (1, 2) (left) and &, (0%, 2) (rlght).

g,(1,3) g,(03, 3)

<> D0 80 02 10 12 20 28 30 38 40 48 5D 45 40 69 D 78 t)\,\n'_‘l.“)ulltser\c 68 10 756 s

Fig. 8. Same as Fig. 6 except spectrum W|dth PPI displays of &, (1, 3) (left) and &, (0%, 3) (right).

4.2 A Simple Hybrid Spectrum Width Estimator

As mentioned before, a hybrid approach to spectrum width estimation uses the best characteristics of each individual estimator. In general, to
measure wide spectrum widths, the &, (0, 1) and &, (0%, 1) estimators perform the best; and, the use of higher autocorrelation lags in the
denominator in (1) allows for better narrow spectrum width recovery. This can be readily seen by examining the Gaussian autocorrelation
function which is typical of weather signals for both wide and narrow spectrum widths. For wide spectrum widths, the ACF is narrow and the
magnitude falls off rapidly after a few lags; whereas, for narrow spectrum widths, the ACF is wide and longer lags are needed to get an
appreciable change in magnitude. For the WSR-88D, a hybrid spectrum width estimator uses &, (0, 1) for wide, &, (1, 2) for medium, and &,
(1, 3) for narrow spectrum width recovery. The choice of which estimator to use is based on fuzzy logic [18]. A simple hybrid spectrum width
estimator can also be created using the proposed estimators: &, (0, 1), 6, (0% 2), and &, (0%, 3). In this simple approach, we choose the
estimator that has the best performance for wide spectrum widths, &, (0%, 1), as long as it does not provide a meaningless value, which is more
likely as the spectrum width becomes narrower. If a meaningless value occurs, we choose the next best “wide” spectrum width estimator, &,
(0% 2). Lastly, if the &, (0% 2) produces a meaningless value, we choose &, (0%, 3).

Next, we apply our new estimator to the same data as in 4.1. In Fig. 9, the WSR-88D hybrid spectrum width estimator (left) and a simple
hybrid spectrum width estimate (right) is shown. Both estimators provide good wide spectrum estimates; however, the WSR-88D hybrid
spectrum width estimator shows some narrow spectrum width values that should be wider (top-left and bottom-right in display). The bias is
observed when comparing regions of high spectrum width estimates in Fig. 6 (left display) to like regions in Fig. 9 (left display) and recalling
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that the estimator in Fig. 6 (left display) should provide the best possible wide spectrum width estimates of the available estimates to the WSR-
88D hybrid spectrum width estimator. These same high spectrum width regions appear to be displayed properly by the simple hybrid spectrum
width estimator (compare Fig. 6 and Fig. 9 right displays). Additionally, the simple approach appears to have fewer zeroes than does the WSR-
88D hybrid spectrum width estimator. This is because the fuzzy logic in the latter only chooses between the &, (0, 1) and &, (1, 2) for this case.

That is, the &, (1, 3) is not used at all. Still, it is difficult to establish which estimator provides the best narrow spectrum width values and
further analysis is needed.

WSR-88D Hybrid Possible Hybrid
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Fig. 9. Same as Fig. 6 except spectrum width PPI dlsplays of WSR-88D (left) and proposed (right) hybrid spectrum width estimators.
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5. Conclusions

This paper introduced the concept of “matched” autocorrelation estimates to produce improved spectrum width estimators. When compared
to conventional PPP estimators, the proposed estimators exhibit improved performance in terms of bias and standard deviation for narrow
spectrum widths, and saturation characteristics for wide spectrum widths. This was illustrated through simulations and real data collected on a
WSR-88D radar. In general, it was seen that the best wide spectrum with estimator uses the lowest possible lags; whereas the best narrow
spectrum width estimator uses larger autocorrelation lags. Combining the best characteristics of the proposed estimators into a simple hybrid
spectrum width estimator highlighted the advantages of the hybrid approach as well as the improved performance of the new estimators.
Although the results are promising, a complete characterization of the new estimators is warranted. For example, performance at low SNR,
different samples sizes, and different PRTs are needed to develop an optimal hybrid spectrum width estimator.
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