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1 Introduction 

Radar echo tops were analyzed in meteorology from the moment the first weather radars were put into 
service, and even before the precise definition of an echo top was formulated. The first notation of the 
echo top definition belongs to Donaldson and can be found in a private conversation with Dr. David 
Atlas according to Lakshmanan et al., (2013). Donaldson suggested that a storm echo top is defined by 
the maximum height of some standard value of reflectivity. In the course of this particular study we 
define the echo top as the maximum height 

€ 

Hi,h  (in km AMSL) related to the measured echo 

€ 

Zi,h = τ  (in 
dBZ) at the 

€ 

i-th point of the measurements domain: 

 

€ 

EchoTopi =max Hi,h : Zi,h = τ{ }( ) ,
 

( 1.1 ) 

where 

€ 

h  runs from some minimal height above the sea level 

€ 

Hmin  (1 km AMSL) up to the maximum 
height 

€ 

Hmax  that most often is taken as the tropopause top (20 km AMSL). 

The echo top concept is widely used with different threshold values 

€ 

τ  (18 dBZ, 38 dBZ or 45 dBZ) to 
detect strong updrafts of the storm that may point to potential severe weather such as hail (Waldvogel et 
al., 1979) and wind gusts. Unfortunately, the limitations of existing echo top calculation methods were 
recognized in different studies (e.g., Atlas et al., 1963; Delobbe and Holleman, 2006; and Lakshmanan 
et al., 2013). 

The assignment of the height at which echo top appears is one of the sources of the possible errors. 
The error can occur due to inaccurate antenna pointing or to variations of the atmospheric propagation 
conditions. Another possible source of error is related to the measurement of the reflectivity itself. The 
latter is most often caused by attenuation and/or overshooting. Both types of errors tend to increase with 
the distance from the radar because of the increased size of the sampled volume. Except for the above-
mentioned uncertainties, the probability that radar during the scanning cycle will detect reflectivity 
exactly equal to the given threshold is rather small. All the possible error sources were tackled in 
different articles (e.g., Delobbe and Holleman, 2006; and Lakshmanan et al., 2013; Atlas et al., 1963). 

The height assignment problem was addressed in the study published by Delobbe and Holleman, 
(2006). The uncertainty in the height assignments was evaluated by comparison between the Belgian 
and Dutch radars in Wideumont and de Bilt, respectively. They conclude that: “The impact of the height 
assignment errors is very limited (around 0.5 km for all ranges). In contrast, small errors in the 
reflectivity measurements may strongly affect the echo top heights especially if the measured maximum 
reflectivity is close to the echo top threshold”. 

In addition, the reflectivity 

€ 

Z  reported at a certain location can be affected by the side-lobes artifacts 
and can be valid approximately a half-power beam width away, according to Atlas et al., (1963). A 
review of the existing solution of this problem can be found in Lakshmanan et al., (2013). In the same 
study an estimation of the echo top height, assuming a locally linear variation in the vertical reflectivity 
profile near the cloud top, was suggested. The assumption of local linearity also allows assessing the 
echo top in the domain points where reflectivity values in the 

€ 

h  volumes are close but not exactly equal 
to the threshold 

€ 

τ . 
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The idea of this study is to test a technique that estimates the echo top exploiting not only the vertical 
but also the horizontal variation of reflectivity measurements. In this study, the assumption of local 
linearity is relaxed by allowing also non-linear variation of reflectivity vertically and horizontally. 

A vertical segment interpolation technique, described in Section 3, is a suitable solution for this 
problem because it deals with measurement uncertainties in a very natural way. The generalized rational 
interpolating models can represent the echo top of any threshold based on the measurements of one or 
several radars, independently of their location and scanning strategy. To test the idea, data of a single 
radar are used. Description of the scanning strategy and the resolution of the data can be found in 
Section 2. Results of the experiment are presented and discussed in Section 4 of the paper. 

 

2 Radar Measurements 

For this experiment data from the volume scan of the C-Band (5.62 GHz) weather radar in 
Wideumont (Belgium) are used. The radar performs three scans: 1) a 5 elevation scan every 5 minutes, 
2) a 10 elevation scan and 3) a velocity dedicated scan, both performed every 15 minutes. 
Measurements from the second volume scan are used in this study. In the second scan the radar sweeps 
the atmosphere at 0.5°, 1.2°, 1.9°, 2.6°, 3.3°, 4.0°, 4.9°, 6.5°, 9.4° and 17.5° elevation angles with a 483 
Hz pulse repetition frequency. The samples are collected every 500 m in range, corresponding to an 
average of 2 successive range bins, and 1° in azimuth, corresponding to an average of 20 pulses. The 
maximum range of the radar measurements is 240 km. The data are coded with a resolution of 0.5 dB. 
Note that the Doppler filtering is not used in the second scan. Post-processing corrections of the raw 
radar data include identification of non-meteorological echoes based on: 1) satellite observations of 
cloud-free areas (Goudenhoofdt, 2014), 2) a texture-based technique (Gabella and Notarpietro, 2002); 
and 3) a three-dimensional algorithm as proposed in Steiner and Smith, (2002) and Berenguer et al., 
(2006). The effect of the post-processing corrections for the first elevation at 0.5° can be observed in 
Figure 1. The removed non-meteorological echoes are colored in grey. 

 
a) 

 
b) 

 
Figure 1: The reflectivity data of the first elevation (0.5°), with the original uncorrected data panel a) and post-processed data panel b). 

Non-meteorological echoes eliminated from the scan are marked in grey. 

After applying the post-processing corrections, the data of the volume scan are geo-localized. The 
latitude, longitude and height above the sea level, assuming 4/3 Earth’s radius model (Doviak and 
Zrnic, 1993) are calculated for the center of each sample volume. Transformation of the position to the 
geographical coordinate system reduces errors in the composite grid of a large domain area. 
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3 Interpolation method 

3.1 Theory and notation 

The generalized rational multivariate interval interpolation technique (GRMIIT) used in the following 
is based on the idea described in Salazar Celis et al., (2007). The GRMIIT uses generalized rational 
functions of a finite dimensional real vector  of the form 

 

€ 

rn,m (x ) =
pn,m (x )
qn,m (x )

=

p jb j (x )
j =0

n

∑

q jb j (x )
j =0

m

∑
 ( 3.1 ) 

where the real numbers 

€ 

p j  and 

€ 

q j  represent the 

€ 

n +1 coefficients of the numerator and the 

€ 

m +1 
coefficients of the denominator and where the 

€ 

bj (x ) are multivariate basis functions. For the 
normalization, one of the coefficients 

€ 

p j  and 

€ 

q j  can be fixed and the rational function 

€ 

rn,m (x )  will have 
n+m+1 degrees of freedom. In our meteorological application, 

€ 

x = (φ,λ)  where the real numbers 

€ 

φ  and 

€ 

λ  represent the latitude and the longitude of the radar measurement points. Furthermore, the Chebyshev 
polynomials of the first kind are used for 

€ 

bj (x ) ordered in the following way: 

€ 

b0(φ,λ) =1, 

€ 

b1(φ,λ) = φ , 

€ 

b2(φ,λ) = λ , 

€ 

b3(φ,λ) = 2φ 2 −1, 

€ 

b4 (φ,λ) = 2λ2 −1, 

€ 

b5(φ,λ) = φλ , 

€ 

b6(φ,λ) = 4φ 3 − 3φ , 

€ 

b7(φ,λ) = 4λ3 − 3λ, 

€ 

b8(φ,λ) = 2φ 2λ − λ , 

€ 

b9(φ,λ) = 2λ2φ − φ , 

€ 

b10(φ,λ) = 8φ 4 − 8φ 2 +1, ... How

€ 

n  and 

€ 

m  
are chosen is explained in the sequel. 

Generalized rational functions of sufficiently low degree can already accurately approximate 
functions showing almost constant values in one region and a sharp increase/decrease in values in the 
other region. These exceptional approximation properties were demonstrated in different applications of 
the suggested method (e.g., Cuyt et al., to appear; Cuyt et al., 2014; Pacanowski et al., 2012; 
Deschrijver et al., 2010; Salazar Celis et al., 2013). In contrast to other nonlinear approximation 
techniques, the proposed vertical segment interpolation provides, by using uncertainty intervals 

€ 

Fi  
around each measurement at 

€ 

x i, full control of the residual error. 

Consider a set of 

€ 

s+1 measured values 

€ 

fi,i = 0,...,s  at positions 

€ 

x i, 

€ 

i = 0,...,s. Let the measurement 

uncertainty be represented by the real value intervals 

€ 

Fi = f i, f i[ ]  with 

€ 

fi ≤ f i ≤ f i . We now search for a 

generalized rational function 

€ 

rn,m (x )  of the form given in (3.1) that satisfies 

 

€ 

rn,m (x i)∈Fi  ,  

€ 

i = 0,...,s 

or 

€ 

fi ≤ rn,m (x i) ≤ f i  ,  

€ 

i = 0,...,s, 

( 3.2 ) 

where 

€ 

n +m ≤ s. 

Assuming 

€ 

qn,m (x i) > 0 , 

€ 

i = 0,...,s and linearizing (3.2) we obtain the homogeneous system of linear 
inequalities 

 

€ 

pn,m (x i) − f iqn,m (x i) ≥ 0

−pn,m (x i) + fiqn,m (x i) ≥ 0

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

   ,   

€ 

i = 0,...,s . ( 3.3 ) 

The assumption that 

€ 

qn,m (x i)  is positive in the points 

€ 

x i,i = 0,...,s causes no loss of generality. 

€ 

x 
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Let us denote by 

€ 

An,m  the 

€ 

(2s+ 2) × (n +m + 2)  matrix corresponding to the inequalities in (3.3), 

 

  

€ 

An,m =

b0(x 0) ! bn (x 0) − f0b0(x 0) ! − f0bm (x 0)
" " " "

b0(x s) ! bn (x s) − fsb0(x s) ! − fsbm (x s)
−b0(x 0) ! −bn (x 0) f0b0(x 0) ! f0bm (x 0)
" " " "

−b0(x s) ! −bn (x s) f sb0(x s) ! f sbm (x s)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 ( 3.4 ) 

and by 

€ 

An,m
( j )  the 

€ 

j-th row of the matrix in (3.4). It was shown in Salazar Celis et al., (2007) that a robust 
solution 

€ 

rn,m (x )  of (3.3) can be computed from the following quadratic programming problem: 

 

€ 

arg min
c ∈R n+m+2

c 2
2

 

subject to 

€ 

An,m
j c −δ An,m

j
2
≥ 0,   

€ 

j =1,...,2s+ 2 

( 3.5 ) 

with 

€ 

c = p0,..., pn,1,q1,...,qm( )T
 and 

€ 

2
 denoting the Euclidean norm. The real value 

€ 

δ > 0  is set to the 
inverse of the condition number of the matrix 

€ 

An,m  (Cuyt et al., 2014). If the quadratic programming 
problem (3.5) has a solution, it is unique and the function 

€ 

rn,m  is pole-free at each measured point, 
meaning 

 

€ 

∀i = 0,...,s , 

€ 

qn,m (x i) > 0. ( 3.6 ) 

Existence of the solution for specific 

€ 

n  and 

€ 

m  depends on the width of the intervals 

€ 

Fi  and on 

€ 

s. For 

€ 

n +m = s, a solution is guaranteed to exist (Cuyt and Wuytack, 1987). At the same time, several choices 
for 

€ 

n  and 

€ 

m  may deliver a generalized rational interpolant. So, while we may obtain a unique 

€ 

rn,m (x )  
for given 

€ 

n  and 

€ 

m , we may find various interpolants when varying 

€ 

n  and 

€ 

m . It is most natural to 
proceed with the search for a suitable 

€ 

n  and 

€ 

m  by increasing 

€ 

n +m, for instance by letting 

€ 

(n,m)  run 
through the sequence (0,0), (1,0), (1,0), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), … In this way 
the first choice for 

€ 

n  and 

€ 

m  that leads to a solution of (3.5) delivers the least complex generalized 
rational function. For a more complete discussion of this aspect we refer to (Cuyt et al., 2014). Let us 
now discuss how to treat the data. The selection procedure for the radar measurements starts with the 
interpolation of the smallest vertical segments, being the most trusted measurements, and adaptively 
adds segments depending on the found solution. Details on how this is done, can be found in (Cuyt et 
al., to appear) 

 

3.2 2D vertical segment interpolation of echo top 

The volumetric measurements of Wideumont’s weather radar are transformed into a set of uncertainty 
intervals for the height of a given echo top threshold of 45 dBZ. The width of each interval in a 
particular geographical point 

€ 

x i = (φi,λi) is assumed to be equal to the difference between two heights 
containing the threshold reflectivity. 

As explained in Section 2, the volumetric radar measurements are post-processed and the available 
heights 

€ 

Hi,(h−1) and 

€ 

Hi,h  corresponding to the closest reflectivities 

€ 

Zi,(h−1) and 

€ 

Zi,h  enclosing the 
threshold value , 

€ 

Zi,(h−1) ≥τ ≥ Zi,h , are extracted. Here the index 

€ 

h  runs through a number of discrete 
values corresponding to scanning elevations. For each of these points the geolocation 

€ 

x i = (φi,λi) is 

€ 

τ
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calculated. The heights 

€ 

Hi,(h−1),i = 0,...,s  and 

€ 

Hi,h ,i = 0,...,s are used to form vertical segments 

€ 

Fi . The 
lower bound 

€ 

fi  of vertical segment 

€ 

Fi  takes the value of 

€ 

Hi(h−1)  and the upper bound 

€ 

f i takes the value 
of 

€ 

Hih  for each of the 

€ 

s+1 points in the orthogonal projection on the 0° elevation scan plane having 
exceeded the threshold . 

With this 

€ 

x i and 

€ 

Fi  we now apply the GRMIIT and compute 

€ 

c  from (3.5) which are the coefficients 
in 

€ 

rn,m (φ,λ) of (3.1). 

The values 

€ 

rn,m (φi,λi)  represent the 

€ 

EchoTopi  values of (1.1) in each of 

€ 

s+1 measurement points. 
This interpolation 

€ 

rn,m (φi,λi)  provides a rough resemblance of the 

€ 

EchoTopi  values. For a more 
accurate solution a 3D problem with vertical segments representing the reflectivity measurement 
uncertainties could be considered. 

 

4 Results and discussion 

The results of the interpolating height of the reflectivity measurements of the Wideumont’s radar for 
23 August 2011 (at 0634 UTC) are presented in Figure 2. A set of 1506 vertical segments was selected 
by the procedure described in Section 3. The GRMIIT returns a 

€ 

rn,n (φ,λ)  function with 

€ 

n +1 = 5  
numerator coefficients and 

€ 

m +1 =15 denominator coefficients. The points 

€ 

x i = (φi,λi) , 

€ 

i = 0,...,1505 
belong to the Wideumont’s radar domain in the 240 km range from the (49.9136, 5.5044) location. The 
interval lower bounds 

€ 

fi,i = 0,...,1505  on the radar measurements domain vary between 0.6 km and 12.8 
km AMSL. The interval upper bounds 

€ 

f i,i = 0,...,1505 vary from 0.7 km to 15.3 km AMSL. The 
coefficient vector 

€ 

c , leading to the function 

€ 

r4,14 (φ,λ), is given in Table 1 (for the numerator 
coefficients 

€ 

p j  of 

€ 

p4,14 (ϕ,λ) ) and in Table 2 (for the denominator coefficients 

€ 

q j  of 

€ 

q4,14 (φ,λ)). 

 

 
a) 

 
b) 

 
Figure 2:The interpolating function

€ 

r4,14  with 1506 vertical intervals panel a) 
 with the corresponding EchoTop (in m AMSL) panel b) (

€ 

τ = 45dBZ). 

 

€ 

τ
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Table 1: Coefficients of the numerator of the 

€ 

r4,14  interpolation function. 

€ 

p j  Value 

€ 

p0 9.409398042650650 

€ 

p1 0.257886996070062 

€ 

p2 0.447830743881366 

€ 

p3 1.859853164522489 

€ 

p4  7.447515170159329 

 

 
Table 2: Coefficients of the denominator of 

€ 

r4,14  interpolation function. 

€ 

qk  Value 

€ 

q0  0.000686897833439 

€ 

q1 -1.30407311420512e-20 

€ 

q2  -9.33367062381218e-21 

€ 

q3  0.000048374525072 

€ 

q4  0.000439435209733 

€ 

q5  -4.20270574696356e-20 

€ 

q6  -0.000114693620535 

€ 

q7  0.000031177771540 

€ 

q8  -1.25748025952830e-20 

€ 

q9  2.24536641100569e-21 

€ 

q10 -0.000024860291922 

€ 

q11 6.32190581637592e-20 

€ 

q12 -0.000024860291922 

€ 

q13 -0.000024860291922 

€ 

q14  -0.000024860291923 

 

To conclude, in this work we have presented a generalized rational multivariate interval interpolation 
technique and showed the results of its application to the echo top estimation. As can be observed in 
Figure 2, some residual artifacts of the ground clutter close to the radar location influence the echo top 
interpolation function. This emphasizes the importance of the assessment of the radar measurements. As 
mentioned in Section 3, the 

€ 

EchoTop  achieved by this method is only a rough estimate of the true echo 
top values. 

The application of GRMIIT may be extended to interpolation of the 3D radar reflectivity field. In 
such an application the vertical segments represent the uncertainty in the reflectivity measurement at 
each point 

€ 

(φi,λi,hi)  of the radar volumetric data. From the interpolation function 

€ 

rn,m (φ,λ,h) the 
discrete level surface 

€ 

rn,m (φi,λi,hi) = 45  provides a more precise echo top estimation. It will also allow 
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us to better assess the effects of both types of uncertainties (in height and in reflectivity) in the radar 
measurements. 
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