
Statistical model

● We model the discrepancy between gauge rainfall 
accumulation G and radar rainfall accumulation R by

● Based on empirical evidence, our model is based on 
the assumption that this quantity is normally distributed.

● The assumption is that the error can be separated into 
a systematic component μ and a standard normally 
distributed residual component ε according to

● In practice the systematic bias μ depends on multiple factors θ such as rainfall accumulation, 
distance from radar, altitude of the radar bin and precipitation type. 

● To account for multiple factors affecting the systematic bias μ, we use a multivariate kernel 
regression model

where the kernel K
H
 is a Gaussian function whose covariance matrix H is estimated from the 

observed variables θ
i
 and F-values f

i
. 

● The kernel regression technique is also applied to residuals, which gives an estimate       for 
the regression variance σ2. 

● We use spatiotemporal Kriging to interpolate the residual component ε. Kriging gives also a 
variance estimate. 

Main advantages:
● The regression model is capable of explaining multiple factors contributing to the 

systematic bias and residual error variance.

● The model is better able to separate the systematic and residual errors than simple 
univariate models or models assuming constant variance. 

● The model accounts for transient errors by utilizing spatiotemporal correlation of 
residuals. Addressing temporal correlation is beneficial due to sparsity of rainfall 
observations and gauge network.

The model is fully probabilistic: for each bin or area-averaged radar 
rainfall, it gives mean and variance estimates     and     determining a 
normal distribution for the corresponding ground rainfall.

Application of the method
(FMI radars, lowest elevation angle, accumulation time 1 hour, 23. October 2013 03:00-04:00 UTC, attenuation+VPR corrected)
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μ̂H(θ)=
∑i=1

n
KH(θ−θi) f i

∑i=1

n
KH(θ−θ i)

original regression (R) regression 
(distance)

regression 
(R+distance)

mean(F) 0.49312 -0.08725 -0.014 -0.0575

variance(F) 10.957 9.4274 10.957 9.3266

F(θ)=μ(θ)+σ (θ)ϵ

Illustrative examples
(Ikaalinen radar, lowest elevation angle, accumulation time 1 hour, June-September 2013, attenuation+VPR corrected)

Figure 2. Regression surface       fitted to F-
values.

Figure 3. Residual variance       of regression 
surface fitted to F-values.

Figure 7. Original radar rainfall field and mean and variance estimates for F. Figure 8. Regression and Kriging -corrected radar rainfall field and lower and upper bounds of 
90% probability intervals.

Figure 4. Spatial correlation of residual 
errors.

Figure 5. Temporal correlation of residual 
errors.

● The multivariate regression model reveals, for instance, different range-
dependent behavior of gauge-radar error for different accumulations. 

Main observations:
● The mean F-values for small rainfall accumulations are positive (meaning radar 

underestimation).
● The mean F-values for large rainfall accumulations far from radars are negative 

(meaning radar overestimation). A likely explanation is a locally biased VPR 
correction and occurrence of hail.

● The model gives large variances (i.e. uncertainties) far from radars.
● The kriged estimates have small variances near gauges.

10-fold cross validation with independent rain gauges:
● Ten iterations, at each iteration 1/10 of the gauges are not included 

in the model fitting or the Kriging interpolation points.
● Mean and variance of F are averaged over all gauges within the 

coverage of each radar.

Ĝ=10
μ̂

10 R

original regression 
(R+distance)

regression (R+distance) and 
Kriging

mean(F) 0.88388 -0.01275 -0.0072

variance(F) 11.116 8.4351 7.6402

Table 1. F-values for the FMI gauge and radar networks with different regression variables.

Table 2. F-values for the FMI gauge and radar networks with regression and combined regression and 
Kriging models.

● For a given radar rainfall R, the expected ground rainfall      is given by

where      is the expected F computed from (1) by using the regression and 
Kriging estimates. 

● By using the estimated distribution of F, we can also compute the probability 
that the ground rainfall accumulation lies at the given interval.

Main observations:
● After regression correction, the systematic bias is near zero. The 

variance of F is also decreased.
● Using two regression variables yields the best results.
● Applying Kriging to residuals further decreases the variance of F.

μ̂ σ̂
2

● The residual errors ε have both spatial and 
temporal correlation. This can be utilized 
when computing Kriging-interpolated 
residuals. 

● A metric variogram model (time as a third 
spatial coordinate) is used for the Kriging 
interpolation.

● The model is anisotropic in space and time 
and consists of exponential functions. 

● Observations from multiple elevation angles 
can be used when altitude is included as 
one coordinate.

(1)

μ̂

Figure 6. Variogram model fitted to 
residuals.

Figure 1. Hourly F-values, 179 samples.
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