FOREWORD

The International Conference on Alpine Meteorology (ICAM) series was started in 1950 in Italy by Mario BOSSOLASCO, a far sighted geophysicist and meteorologist. The meteorological services and some research institutes in the then six Alpine countries Italy, Austria, Switzerland, France, Germany and Yugoslavia (today: Slovenia and Croatia) acted as regular hosts at biennial intervals. A nine-month-shift to odd years in 2003 resulted in a better synchronization with the Mountain Meteorology Conference series of the American Meteorological Society taking place in even years. The 30th realization of ICAM in Rastatt, Germany, concludes the fifth cycle through the Alpine countries before a new routine will be started in 2011 in the United Kingdom, which recently joined the ICAM-countries.

Scientific conferences constitute an important method to establish new cooperative links and to further existing cooperation. They provide occasions for the exchange of new ideas and techniques between staff and students from universities, research laboratories, and meteorological services. The communication of ideas is regularly enhanced, when the venue is situated in a town of modest size and with some cultural backcloth. In summer 2007 the *Badnerhalle* in Rastatt was found to meet these criteria well. Good public transportation links and the proximity to Black Forest and Vosges, where the COPS operations took place from June to August 2007, are additional advantages.

The settlement of Rastatt was first mentioned in written documents as early as 1084. Around 1700 the grown village gained town-rights, just before margrave *Ludwig-Wilhelm* moved his residence from Baden-Baden to here in 1705. The castle was completed during the following years. Today it preserves the state-rooms, richly ornamented in rococo-style, and several museums. After numerous changes of the political situation in the border region of Germany and France, today's population of nearly 50,000 inhabitants could enjoy several decades of stability in a central region of the European Union. We take this spirit of cooperation as a good *omen* for the success of ICAM-2009.

The response to the call for papers was impressive indeed. The programme committee structured the submitted contributions in two different, but equally important classes: short oral presentations to the plenary and poster presentations for in-depth discussions with interested colleagues during extended poster sessions. All contributors were given the possibility to submit a two-page extended abstract five weeks before the conference in order to aid individual selections during the event. Around 125 *Extended Abstracts* were received and are collected here following the ICAM-2009 *Programme* (pp. *ii-xvii*) in two large blocks:

- A) Oral Presentations (pp. 1–125) and
- B) Poster Presentations (pp. 127–253)

The *Author Index* (pp. 257–259) helps to find contributions by their originators. It is hoped that this volume serves the intended purpose during the conference and that it will later conserve some of the spirit in the tradition of previous ICAM volumes. For cost reasons the figures are printed in black-and-white; numerous colour versions are contained in the electronic issue which can be downloaded from the conserved ICAM-2009 website under www.pa.op.dlr.de/icam2009/extabs.

In conclusion we express our gratitude to all contributors to this volume for adhering well to dates and guidelines (cf. pp. 254–255), to our colleagues on the organisation and programme committees for their combined efforts to set up a balanced programme and to stage the event, and to our sponsors from industry, international agencies and meteorologically oriented German institutions for their confidence and support.

Around Easter in April 2009

Hans VOLKERT & Günther ZÄNGL

30th International Conference on Alpine Meteorology (ICAM)

Structure of sessions and overview timetable

Time	Monday 11 May 2009	Tuesday 12 May 2009	Wednesday 13 May 2009	Thursday 14 May 2009	Friday 15 May 2009
09:00	Opening	Session 04	Session 08	Session 12	Session 16
	short addresses	BoundLayer	PRECIP	BoundLayer	PRECIP
-	2 'historic' talks	Turbulence	D-PHASE	Cold Pools	other regions
10:30	1 review talk	6 talks	1review, 4talks	6 talks	6 talks
	Coffee	Coffee	Coffee	Coffee	Coffee
11:00	Session 01	Session 05	Session 09	Session 13	Session 17
	PRECIP	BoundLayer	NWP	SNOW	NWP
-	COPS-Observation	Therm. driven flows	COPS-DPHASE		Towards the future
12:30	6 talks	6 talks	6 talks	6 talks	6 talks
-					Awards+Discuss.
	Lunch	Lunch	Lunch	Lunch	13:00
			&		Lunch
14:00	Session 02	Session 06		Session 14	
_	PRECIP	DYNAMICS	guided tour	DYNAMICS	
	Idealized	Synoptic scale	through baroque	Meso.mount.flows 1	
15:00	4 talks	4 talks	residence	4 talks	
15:00	Poster Session	Poster Session	15:30	Poster Session	
	Α	В	Session 10	C	
-	PRE & CLI-1	BL & CLI-2	PRECIP Aerosols	DYN & SNOW	
16:30	(with refreshments)	(with refreshments)	4 talks	(with refreshments)	
16:30	Session 03	Session 07	Coffee	Session 15	
	PRECIP	CLIMATE	Session 11	DYNAMICS	
-	Convect. Initiation		PRECIP	Meso.mount.flows 2	
		o (Analyses		
18:00	6 talks	6 talks	4 talks	6 talks	
19:30	ICEBREAKER		DINNER		
- 21:30					
21.30]			
22:30					

22:30

Note: All submissions were grouped in topical categories, most of them with sub-categories:

CLIMATE	climate aspects	BoundLayer	boundary layer processes
DYNAMICS	dynamical aspects	PRECIP	precipitation processes
NWP	numerical weather prediction	SNOW	snow pack

Typically, packets of 4 or 6 presentations are assembled to fill the 17 oral sessions as given above.

Poster groups *PRE*, *BL* and *DYN* are accompanied by the remaining posters in such a way as to achieve fairly equal numbers of poster presentations for each day (~36).

The programme also serves as table of contents for the 2-page Extended Abstracts (these are available for all contributions for which a page number is given)

as of 15 April 2009

Part A) Sequence of events and oral presentations

Sunday, 10 May 2009				
17:00-19:00	-	Registration		
Monday, 11	May 200	9		
08:00-09:00	page	Registration (continued)		
Opening sess	sion	Welcome and short address Chair: Hans Volkert		
09:10-09:20	002	Gerhard Adrian (DWD, Offenbach, D):		
		ICAM as a regular visitor: Back to Germany for the fifth time		
		Two 'historic' talks with some modern ingredients:		
09:20-09:40	004	Haraldur Ólafsson (Univ. of Reykjavík, Iceland & Univ. of Bergen, N)		
		and <i>Ágústsson</i> : Mountain Meteorology in the Middle Ages		
09:40-10:00	008	Arnold Tafferner (DLR, Oberpaffenhofen, D), Hoinka, Zängl & Weber :		
		The 'miraculous' föhn in Bavaria of January 1704		
		Overview after a recent field campaign in the neighbourhood:		
10:00-10:30		Volker Wulfmeyer (University of Hohenheim, Stuttgart, D):		
		The Convective and Orographically-induced Precipitation Study (COPS):		
		A unique data set for studying the initiation and organization of		
10.00.11.00		convection in low-mountain regions		
10:30-11:00		Coffee		
Session 01		Precipitation Processes: Chair: Mathias Rotach		
11.00 11.15		Observations during COPS		
11:00-11:15		Stephen Mobbs (Univ. of Leeds, UK):		
11.15 11.20	010	Observations of shallow convection over the Black Forest during COPS		
11:15-11:30	010	Andrew Russell (Univ. of Manchester, UK) and Vaughan:		
11.20 11.45	012	An examination of atmospheric lids during COPS		
11:30-11:45	012	Jan Handwerker (KIT, Karlsruhe, D), <i>Träumner, Grenzhäuser, Wieser</i> :		
11:45-12:00	014	Wind measurements with lidar and cloud radar during COPS		
11.45-12.00	014	Paolo di Girolamo (Univ. Basilicata, Potenza, I), Summa, Bhawar, di Iorio, Vaughan, Norton and Peters:		
		Lidar and Radar Measurements of the melting layer in the frame of the		
		Convective and Orographically-induced Precipitation Study		
12:00-12:15	016	Rohini Bhawar (Univ. Basilicata, Potenza, I), <i>di Girolamo, Summa,</i>		
12.00-12.15	070	<i>di lorio and Demoz</i> : Study of an MCS using Raman Lidar in the		
		frame of the Convective and Orographically induced Precipitation Study		
12:15-12:30	018	Alan Blyth (Univ. of Leeds, UK), Huang, Brown, Cotton, Jones, Coe,		
12.13 12.30	010	<i>Choularton, McFiggans</i> and <i>Irwing</i> : Influence of orography and aero-		
		sols on the microphysics of convective clouds observed during COPS		
12:30-14:00		Lunch		
Session 02		Precipitation Processes: Idealized studies Chair: Dale Durran		
14:00-14:15	020	<i>Ulrich Blahak</i> (KIT, Karlsruhe, D):		
		Idealized numerical sensitivity studies on shallow-convection-triggered		
		storms in a low mountain range		
14:15-14:30		Daniel J. Kirshbaum (Univ. of Reading, UK):		
		Lee-wave triggering of deep convection		
14:30-14:45	022	Axel Seifert (DWD, Offenbach, D) and Zängl:		
		Scaling relations in warm orographic precipitation		
14:45-15:00	024	Günther Zängl (DWD, Offenbach, D): The influence of the		
		freezing level on orographic precipitation patterns at small scales		

Monday, 11 M	Monday, 11 May 2009 (continued)			
15:00-16:30		POSTER SESSION A with refreshments		
		Precipitation Processes and Climate		
Session 03	page	Precipitation Processes: Chair: Ron McTaggart-Cowen		
		Convective initiation		
16:30-16:45		Christoph Kottmeier (KIT, Karlsruhe, D), Kalthoff, Corsmeier, Barthlott,		
		Träumner, Arnold, Wieser and Mahlke: Initiation and coherent		
		structures of PBL convection over low mountains during the campaigns		
		ESCOMPTE, VERTIKATOR, CSIP, and COPS		
16:45-17:00	026	Ulrich Corsmeier (KIT, Karlsruhe, D), Barthlott, Kalthoff, Konow et al.:		
		Driving processes for convection initiation over complex terrain: COPS		
		observations and respective COSMO simulations		
17:00-17:15	028	Evelyne Richard (Lab. d'Aérologie, Toulouse, F), Chaboureau, Flamant:		
		Forecasting summer convection over the Black Forest: A case study		
		from the COPS experiment		
17:15-17:30	030	Christian Barthlott (KIT, Karlsruhe, D), Schipper, Kalthoff, Adler and		
		<i>Kottmeier</i> : COSMO model simulation of convergence zones in		
		complex terrain: A case study from COPS		
17:30-17:45	032	Martin Hagen (DLR, Oberpfaffenhofen, D), van Baelen and Richard:		
		Influence of the wind profile on the location of hotspots of convection		
		in mountainous terrain		
17:45-18:00		Andreas Behrendt (Univ. of Hohenheim, Stuttgart, D), Pal, Radlach,		
		Aoshima and Wulfmeyer: Analysis of convection initiation processes		
		in complex terrain with the synergy of COPS remote sensing data		
19:30-21:30		ICEBREAKER		

Tuesday, 12 M	lay 200	Ð		
Session 04		Boundary Layer Processes: Turbulence Chair: Christian Barthlott		
09:00-09:15	034	<i>Branko Grisogono</i> (Univ. of Zagreb, CRO):		
		Generalizing the local mixing length-scale for stable atmospheric		
		boundary layers		
09:15-09:30	036	Željko Vecenaj (Univ. of Zagreb, Zagreb, CRO), Belušić and Grisogono:		
		Characteristics of the near-surface turbulence during a bora event		
09:30-09:45	038	Marwan Katurji (Univ. of Canterbury, New Zealand), Sturman, Zawar:		
		An investigation into ridge-top turbulence characteristics: A New		
		Zealand case study of in situ measurements and large eddy simulation		
09:45-10:00	040	<i>Rebecca</i> Mott (SLF, Davos, CH) and Lehning: The application of		
		microscale airflow simulations for quantifying snow drift processes over		
		complex terrain		
10:00-10:15		Stefano Serafin (Univ. of Trento, I), Caresia, Panelatti and Zardi:		
		A numerical investigation of the potential temperature and turbulent		
10.15 10.20		kinetic energy budgets in thermally driven winds in alpine valleys		
10:15-10:30		Stephan de Wekker (Univ. of Virginia, Charlottesville, USA), <i>Lee</i> ,		
		<i>Craven, George</i> and <i>Tertell</i> : A preliminary investigation of atmospheric		
10.20 11.00		boundary layer evolution over the Blue Ridge Mountains in Virginia		
10:30-11:00		Coffee Coffee		
Session 05		Boundary Layer Processes: Chair: Branko Grisogono		
11:00-11:15	042	Thermally driven flows		
11:00-11:15	042	Jürg Schmidli (IAC ETH, Zurich, CH) and <i>Rotunno</i> :		
11:15-11:30	044	Mechanisms of along-valley winds		
11.15-11.30	044			
		A conceptual model for the daytime evolution of the thermal structure		
		in a mountain valley under fair weather conditions		

11:30-11:45	046	Bart Geerts (Univ. of Wyoming, Laramie, USA) and Demko:		
11.50 11.15	010	Observations and numerical simulations of the interaction between the		
		thermally-forced orographic circulation in the convective boundary		
		layer and deep convection		
11:45-12:00	048	Jian-Wen Bao (NOAA, Boulder, USA), E. Grell, Michelson and G. Grell:		
11.45-12.00	040	Investigation of orographic venting of atmospheric boundary layer air		
12.00 12.15	050	using observations and the WRF-Chem model		
12:00-12:15	050	Stefan Emeis (KIT, Garmisch, D), Schäfer, Forkel, Obleitner & Suppan:		
		Assessment of air quality and mixing-layer height in an Alpine valley		
12.15 12.20	050	from measurements and numerical modelling		
12:15-12:30	052	Cyrille Flamant (IPSL, Paris, France), Champollion, Richard, Masson,		
		Cuesta et al. : Complex valley flows and their impact on water vapor		
		transport in pre-convective and convective environments: a case study		
12:30-14:00		Lunch		
Tuesday, 12 M				
Session 06	page	Dynamics: Synoptic scale aspects Chair: Manfred Dorninger		
14:00-14:15	054	Ron McTaggart-Cowan (Env. Canada, Dorval, CAN), Galernau and		
		<i>Bosart</i> : Development of an Alpine lee cyclone during MAP D-PHASE:		
		Forcings for cyclogenesis		
14:15-14:30		Kristian Horvath (DHMZ, Zagreb, CRO), Ivatek-Šahdan, Ivančan-Picek		
14:30-14:45	056			
		Asian monsoon		
14:45-15:00	058	<i>Sixiong Zhao</i> (CAS, Beijing, China) and <i>Fu</i> :		
15:00-16:30				
16:30-16:45				
		5		
16:45-17:00	060			
17:00-17:15	062			
17:15-17:30	064	Monika Rauthe (KIT, Karlsruhe, D), <i>Kunz</i> and Mohr:		
		Winter storms with high loss potential in a changing climate: A regional		
		perspective		
17:30-17:45	066	Rebekka Posselt (MeteoSwiss, Zurich, CH), Dürr, Stöckli and Müller:		
		Satellite-based retrieval of global radiation over complex terrain: A		
		climatology for the Alps		
17:45-18:00	068	Jochen Wagner (Univ. Bodenkultur, Vienna, A), Arola, Blumthaler,		
		-		
		UV irradiance measurements with satellite-derived values: 1-D and 3-D-		
		OV ITAUIAILE THEASULETHETILS WITH SALEHILE-DELIVED VALUES. I-D AND J-D-		
14:30-14:45 14:45-15:00 15:00-16:30 Session 07 16:30-16:45 16:45-17:00 17:00-17:15 17:15-17:30 17:30-17:45	060 062 064 066	and <i>Grubišić</i> : Evolution and structure of two severe cyclonic Bora events: Contrast between the northern and southern Adriatic <i>Sylvain Mailler</i> (LMD/CNRS, Paris, F) and <i>Lott</i> : A dynamical influence of the Himalayas on the winter south-eastern Asian monsoon <i>Sixiong Zhao</i> (CAS, Beijing, China) and <i>Fu</i> : Dynamics of a vortex with heavy rainfall east of the Tibetan Plateau Poster session B with refreshments Boundary Layer Processes and Climate Climate aspects Chair: David Whiteman Reinhold Steinacker (Univ. of Vienna, A), <i>Sperka</i> and Mayer: A new high resolution Alpine re-analysis <i>Simona Fratianni</i> (Univ. of Turin, I) and Aquaotta: Climate variability in North-Western Italy through the use of reconstructed and homogenized thermo-pluviometric series <i>Sophie Fukutome</i> (MeteoSwiss, Zurich, CH), <i>Liniger</i> and <i>Frei</i> : An Alpine climatology of extreme events <i>Monika Rauthe</i> (KIT, Karlsruhe, D), <i>Kunz</i> and <i>Mohr</i> : Winter storms with high loss potential in a changing climate: A regional perspective <i>Rebekka Posselt</i> (MeteoSwiss, Zurich, CH), Dürr, Stöckli and Müller: Satellite-based retrieval of global radiation over complex terrain: A climatology for the Alps <i>Jochen Wagner</i> (Univ. Bodenkultur, Vienna, A), <i>Arola, Blumthaler,</i> <i>Fitzka, Kift, Kreuter, Rieder, Simic</i> et al.: Comparison of ground-based		

Wednesday,	13 May	2009		
Session 08	page	Precipitation Processes: D-PHASE Chair: Andreas Behrendt		
09:00-09:30	070	Mathias Rotach (MeteoSwiss, Zurich, CH), Arpagaus, Dorninger, Hegg,		
		Montani and Ranzi: MAP D-PHASE: Lessons learned and future		
		developments (overview presentation)		
09:30-09:45	072	Tanja Weusthoff (MeteoSwiss, Zurich, CH), Ament, Arpagaus and		
		<i>Rotach</i> : Verification of precipitation forecasts of the D-PHASE data set		
09:45-10:00		Luca Panziera (MeteoSwiss, Zurich, CH) and Germann:		
		Probabilistic nowcasting of orographic rainfall		
10:00-10:15		Simon Jaun (WSL, Birmensdorf, CH), Walser, Schär and Zappa:		
		Evaluation of a coupled meteorologic-hydrologic (ensemble) prediction		
		system within the MAP D-PHASE		
10:15-10:30	074	<i>Úw</i> e Ehret (TUniv. München, D)		
		Evaluation of operational weather forecasts: Applicability for flood		
		forecasting in Alpine Bavaria		
10:30-11:00		Coffee		
Session 09		Numerical Weather Prediction: Chair: Andrea Buzzi		
		COPS and D-PHASE		
11:00-11:15	076	Stefano Mariani (ISPRA, Roma, I), Casaioli, Lanciani, Accadia and		
		<i>Tartaglione</i> : A multi-model intercomparison study for quantitative		
		precipitation forecast using the 6-month MAP D-PHASE dataset		
11:15-11:30		Hans Stefan Bauer (Univ. of Hohenheim, Stuttgart, D), Wulfmeyer, Zus,		
		Schwitalla, Dick, Bender, Wickert and Gendt: The SPP1167 Project		
		COPS-GRID and results of first studies using GPS and radar data		
11:30-11:45		Matthias Zimmer (Univ. of Mainz, D) and Wernli:		
11.30 11.13		Verification of precipitation forecasts from different regional NWP		
		model categories		
11:45-12:00	078	Kathrin Wapler (DWD, Offenbach, D), Seifert and Ritter:		
	••••	Using COPS data for the validation of the high-resolution NWP model		
		COSMO-DE		
12:00-12:15	080	Olivier Caumont (Météo-France, Toulouse, F), Wattrelot, Jaubert and		
		<i>Ducrocq</i> : Assimilation of weather radar reflectivity in the AROME		
		model for the COPS-IOP9		
12:15-12:30	082	Geneviève Jaubert (Météo-France, Toulouse, F), Yan, Ducrocq,		
		Brousseau, Champollion and Flamant : Impact of GPS data		
		assimilation on the convective scale prediction of COPS-IOP9		
12:30-15:30		Lunch &		
		guided tour through baroque residence		
Session 10		Precipitation Processes: Aerosols Chair: Mark Žagar		
15:30-15:45	084	Jean-Pierre Chaboureau (Univ. of Toulouse, F), Richard, Pinty,		
		di Girolamo, Kiemle and Flamant: Long-range transport of Saharan		
		dust from CALIPSO, airborne and ground-based lidars, and a regional		
		model during COPS		
15:45-16:00		Gregor Gläser (Univ. of Mainz, D) and Knippertz:		
		Influence of the Atlas Mountains on large-scale dust storms in the		
		Sahara desert		
16:00-16:15	086	Céline Planche (LaMP, Clermont-Ferrand, F), Flossmann and Wobrock:		
		The influence of aerosol particle number and hygroscopicity on the		
		evolution of convective cloud systems and their precipitation: A numeri-		
		cal study based on the COPS observations on 12 and 13 August 2007		
16:15-16:30	088	Heike Noppel (KIT, Karlsruhe, D), Blahak, Seifert and Beheng:		
		Investigations of the impact of aersols on a hailstorm in the Black Forest		
16:30-17:00		Coffee		

Wednesday,	Wednesday, 13 May 2009 (continued)			
Session 11	page	Precipitatio	n Processes: Analyses	Chair: Ronald B. Smith
17:00-17:15	090	ldar Barstad	(Univ. of Bergen, N), <i>Heikkila</i>	and Mesquita:
			downscaling at western Norw	way: Time-step precipitation
		intensity		
17:15-17:30	092	Mark Linige	r (MeteoSwiss, Zurich, CH), <i>S</i>	<i>chiemann</i> and <i>Frei</i> :
		Gridding dail	ly precipitation from sparse su	urface networks in complex
		topography:	A reduced space optimal inte	erpolation approach
17:30-17:45	094			
		High resolution analyses based on the D-PHASE & COPS GTS and non-		
		GTS data sets		
17:45-18:00		Stefan Schneider (Univ. of Vienna, A), Steinacker, Dorninger and		
		<i>Gorgas</i> : High resolution precipitation measurements during COPS		
19:30-22:30		DINNER		

Thursday, 14 N	/lay 20	09	
Session 12		Boundary Layer Processes: Cold Pools	Chair: Kristian Horvath
09:00-09:15	096	David Whiteman (Univ. of Utah, Salt Lake Cit	ty, USA), Hoch, Lehner &
		Hahnenberger: Nocturnal cold air intrusions a	at Arizona's Meteor Crater
09:15-09:30		Sharon Zhong (Mich. State Univ., East Lansing	g, USA) and <i>Yao</i> :
		Atmospheric conditions leading to the format	ion of a strong
		temperature inversion in an enclosed basin	
09:30-09:45	098	Manfred Dorninger (Univ. of Vienna, A):	
		Aspects of cold pool life cycle in Austrian sink	
09:45-10:00		Daniel Martínez (Univ. Illes Bal., Palma, E), Cu	
10 00 10 15		Analysis of a cold pool formed in a large basir	
10:00-10:15		Sebastian Hoch (Univ. of Utah, Salt Lake City,	
10:15-10:30	100	Mayer: Topographic effects on radiative co	oling in valleys and basins
10.15-10.50	100	Thomas Haiden (ZAMG, Vienna, A): The role of subsidence in valley and basin war	mina
10:30-11:00		Coffee	ming
Session 13			Chair: Massimiliano Fazzini
11:00-11:15		Justin Minder (Univ. of Washington, Seattle,	
		and <i>Roe</i> : The sensitivity of mountain sr	
		climate warming: Insights from a hierarchy of	•
11:15-11:30	102	Christian Wüthrich (MeteoSwiss, Zurich, CH),	
		Croci-Maspoli, Appenzeller and Weingartner.	55
		digitised snow series over the last 100 years in	n Switzerland
11:30-11:45		Michi Lehning (SLF, Davos, CH), Stössel, Man	
		Measurements and simulations of surface mas	ss- and energy balance
		over snow at a mountain site	
11:45-12:00		Markus Engelhardt (KIT, Karlsruhe, D), Lehne	
		Ground-atmosphere modelling of Alpine pern	natrost and the
12.00 12.15	404	significance of the snow cover	147.1
12:00-12:15	104	Heidi Escher-Vetter (BAdW, Munich, D) and	
		Determination of snow accumulation in high from climate stations	mountains based on data
12:15-12:30	106	Roberto Barbiero (DPCTT, Trento, I), Fazzini a	and Gaddo.
12.15-12.50	100	The exceptional meteorological conditions of	
		the Trentino area (north east Italy): Synoptic a	
		mesoscale	na mological analysis at
		mesoscare	

Thursday, 14 May 2009 (continued)				
12:30-14:00		Lunch		
Session 14	page	Dynamics: Mesoscale mountain flows I Chair: Vanda Gr	ubišić	
14:00-14:15	108	Hans Richner (IAC ETH, Zurich, CH):		
		Estimating foehn dynamics from train and cable car accidents		
14:15-14:30		Marius Opsanger Jonassen (Univ. of Bergen, N), Ólafsson and Reu		
		Flow structures over Hofsjökull glacier, Iceland, during the FLOHOF	=	
		2007 experiment		
14:30-14:45		Michael Würsch (IAC ETH, Zurich, CH), Sprenger and Jenker:		
14.45.15.00		Lagrangian-based analysis of airflow during foehn in the Alps		
14:45-15:00		Simon Vosper (MetOffice, Exeter, UK), <i>Wells, Yan</i> and <i>Arnold</i> :		
15:00-16:30		Using satellite data to constrain gravity-wave drag parametrization Poster Session C with <i>refreshment</i>		
15.00-16.50		Dynamics and Snow	S	
Session 15			Zänal	
16:30-16:45		Dynamics: Mesoscale mountain flows II Chair: Günther Vanda Grubišić (Univ. of Vienna, Austria), Haimov, French, Oolma	5	
10.30-10.45		and Xiao:		
		Wave-induced turbulence in the lee of the Medicine Bow mountai	ns	
16:45-17:00	110	<i>Ivana Stiperski</i> (DHMZ, Zagreb, CRO) and <i>Grubišić</i> :	115	
10.15 17.00		Trapped lee wave interference in presence of surface friction		
17:00-17:15		Dale Durran (Univ. of Washington, Seattle, USA) and <i>Reinecke</i> :		
		The over-amplification of gravity waves in numerical solutions to fl	ow	
		over topography		
17:15-17:30		Patrick Reinecke (NRL, Monterey, USA) and <i>Durran</i> :		
		Initial condition sensitivities and the predictability of downslope wi	nds	
17:30-17:45		Daniel Reinert (Univ. of Mainz, D) and Wirth:		
		The role of gravity waves for banner cloud dynamics		
17:45-18:00		Helen Wells (MetOffice, Exeter, UK) and Vosper:		
		Predictability of orographic drag for realistic atmospheric profiles		

Friday, 15 May 20	Friday, 15 May 2009				
Session 16	Precipitation Processes:	Chair: Christian Keil			
	A look outside of the Alps				
09:00-09:15	Ronald B. Smith (Yale Univ., New Haven, US)	A) and <i>Kirshbaum</i> :			
	Orographic precipitation in the tropics: Linear	r theory of triggered			
	convection				
09:15-09:30	Claus-Jürgen Lenz (KIT, Karlsruhe, D), Kottme				
	Dynamics and predictability of Mediterranear	n cyclones: The influence			
	of sea surface and steep orography				
09:30-09:45	Michael Sprenger (IAC ETH, Zurich, CH), Sch				
	Disentangling the forcing mechanisms of hea				
	along the Alpine south side using potential ve				
09:45-10:00 1	2 Véronique Ducrocq (Météo-France, Toulouse				
	Bresson, Nuissier and Ricard: A numerica	5			
10.00 10.15	processes leading to Mediterranean quasi-sta				
10:00-10:15 1	4 Ulrike Romatschke (Univ. of Washington, Se				
	1 5 1	l diurnal effects on tropical			
10:15-10:30 1	and sub-tropical convection in South America Socorro Medina (Univ. of Washington, Seatt				
10.15-10.50 I	6 Socorro Medina (Univ. of Washington, Seatt and Kingsmill: Structure of mid-latitude				
	California Sierra Nevada as seen by vertically	, 5			
10:30-11:00	Coffee				
10.30 11.00	Conce				

Friday, 15 Ma	y 2009	(continued)		
Session 17	page	Numerical Weather Prediction:	Chair: Evelyne Richard	
		Towards the future		
11:00-11:15	118	Christian Keil (DLR, Oberpfaffenhofen, D) and Craig:		
		Sources of uncertainty determined by high-re	esolution ensemble	
		modelling		
11:15-11:30	120	Kirstin Kober (DLR, Oberpfaffenhofen, D), Cr	5	
		Probabilistic forecasting of thunderstorms thr		
		nowcasting methods and numerical weather	•	
11:30-11:45		Chiara Marsigli (ARPA-SIM, Bologna, I), Mor		
		Intercomparison of limited-area ensemble sys	items during the MAP	
11.45 12.00	422	D-PHASE operation period		
11:45-12:00	122	Javier Garcia Hernandez (LCH EPF, Lausanne Baillet and Schlaise	e, CH), Sirvent, Jordan,	
		Boillat and Schleiss:	ar Bhana river basin	
12:00-12:15	124	Ensemble meteorological forecast for the upp Jason Milbrandt (Env. Canada, Dorval, CAN)		
12.00-12.15	124	<i>Cowen:</i> The Canadian high-resolution NV		
		winter Olympics	VI system for the 2010	
12:15-12:30		Trevor Smith (Env. Canada, Vancouver, CAN) Synder and McLennan	
12.13 12.30		Some forecasting challenges for the 2010 Ob		
		winter games		
Closing session	n		Chair: Stephen Mobbs	
12:30		A w a r d s	,	
-		David Parsons (WMO, THORPEX-IPO, Geneva	a, CH):	
		Towards ICAM-2011: Resumé of current res		
	envisioned trends			
13:00	13:00 Discussion and adjourn			
13:00		Lunch		

Part B) Poster blocks

All posters are on display for the full week. Authors are asked to be ready for discussions at the poster times on Monday, Tuesday and Thursday afternoon, respectively.

	nday	
POSI	er blocks Pnn and Cnn: Session A "Precipitation Processes and Climate-1"	page
P01	<i>Lindsay</i> Bennett (University of Leeds, UK), <i>Blyth, Weckwerth, Burton</i> and <i>Gadian</i> : Observations of convection initiation and development from the Doppler on Wheels radars and comparison with high resolution WRF simulations	128
P02	Andreas Schäfler (DLR, Oberpfaffenhofen, D), <i>Craig, Dörnbrack, Kiemle, Rahm</i> and <i>Wirth</i> : Characterising the convective environment with direct measurements of moisture flux from airborne wind and water vapour lidars	
P03	Samuel Buisán (AEMET, Zaragoza, E), <i>Espero, Sanz, Cortés</i> and <i>Lafragüeta</i> : Characterization of convective activity in the Eastern Iberian Range, Spain	130
P04	Bianca Adler (KIT, Karlsruhe, D), Kalthoff, Barthlott, Corsmeier, Mobbs, Crewell, Träumner, Kottmeier, Wieser and V. Smith: The initiation of deep convection by boundary layer convergence zones during COPS	132
P05	Mamina Kamara (Senegal Met Office, Senegal), <i>Ba</i> and <i>Ndiaye</i> : Case study: impact of the exceptional rains on the floods in Senegal	
P06	Vanja Kovač (ARSO, Ljubljana, SI), <i>Cedilnik, N. Žagar</i> and <i>M. Žagar</i> : Influence of local orography on forecast of precipitation in case of flash floods in Slovenia on September 18, 2007	134
P07	Wolfgang Langhans (IAC ETH, Zurich, CH), Gohm and Zängl: The orographic impact on patterns of embedded convection during the August 2005 Alpine flood	136
P08	Jože Rakovec (Univ. of Ljubljana, SI), <i>Žabkar</i> and <i>M. Žagar</i> : Analysis of different ALADIN forecast runs for the flash flood case in Slovenia, 18 September 2007	138
P09	<i>Jianhua Sun</i> (CAS, Beijing, China) and <i>Zhao</i> : The impact of multi-scale systems on freezing rain and snow storms over southern China	140
P10	<i>Günther</i> Zängl (DWD, Offenbach, D) and <i>Seifert</i> : Misrepresentation of the seeder-feeder mechanism by Kessler-type auto-conversion schemes	142
P11	<i>Idar Barstad</i> (Univ. of Bergen, N): [contents of intented poster amalgamated with oral presentation in session 11]	
P12	Raffaele Salerno (Epson Meteo Centre, Milano, I): Predictability analyses in global and regional scale applications	

P13 - moved to Session 09 -

P14	Thomas Schwitalla (Univ. of Hohenheim, Stuttgart, D), <i>Bauer, Zus</i> and <i>Wulfmeyer</i> : The WRF modeling system and first results of its application within the COPS period	oage
P15	Andrea Buzzi (ISAC-CNR, Bologna, I), <i>Diavolio, Drofa</i> and <i>Malguzzi</i> : The PROSA project: monitoring, nowcasting and short range forecasting over the Alps and other areas of Italy	
P16	<i>Kirsty E.</i> Hanley (Univ. of Reading, UK), <i>Belcher, Clark</i> and <i>Kirshbaum</i> : Predictability of convection in COPS: high-resolution ensemble forecasts from the Unified Model	
P17	<i>Suraj D. Polade</i> (Univ. of Hamburg, D) and <i>Ament</i> : Towards a verification of the hydrological cycle in the D-PHASE models: An evaluation of integrated water vapor	
P18	Mathieu Reverdy(LaMP, Clermont-Ferrand, F), van Baelen, Walpersdorf, Dick, Hagen and Richard:Water vapor fields retrieved with tomography software.	144
P19	Frédéric Tridon (LaMP, Clermont-Ferrand, F), van Baelen and Pointin: Simultaneous X-band and K-band study of precipitation to derive localized Z-R relationships	146
P20	Helge Tuschy (DLR, Oberpfaffenhofen, D), <i>Hagen</i> and <i>Mayr</i> : Environmental conditions and radar observations of organized thunderstorms	148
P21	Holger Mahlke (KIT, Karlsruhe, D), Corsmeier and Kottmeier: Modification of atmospheric parameters by deep convection over complex terrain during COPS	150
P22	<i>Uwe</i> Ehret (TUniv. München, D): Convergence index: A new performance measure for the jumpiness of operational rainfall forecasts	152
P23	Véronique Ducrocq (Météo-France, Toulouse, F), Drobinski, Lionello et al. : HyMeX: An experimental programme dedicated to the hydrological cycle in the Mediterranean	154
P24	Frédéric Jordan (E-DRIC, Epalinges, CH), <i>Garcia Hernadez</i> and <i>Gal</i> : Operational performance of discharge prediction in Alpine regions	156
P25	<i>Giacomo Poletti</i> (Univ. of Trento, I), <i>de Franceschi, Bellin</i> and <i>Zardi</i> : Analysis of precipitation patterns on Mount Baldo (Italy)	158
P26	Matthias Grzeschik (Lab. d'Aérologie, Toulouse, F), Jaubert, Flamant and Richard: Assimilation of LEANDRE2 water vapor observations with the AROME 3D-Var cycle for COPS	160

C01	Fiorella Acquaotta (Univ. of Turin, I) and <i>Fratianni</i> :	
	A contribution to the study of the methods to create the references series	162

C02	Stefan Sperka (Univ. of Vienna, A), <i>Mayer</i> and <i>Steinacker</i> : A quality control and bias correction method developed for irregularly spaced	page
	time-series of observational pressure- and temperature-data	164
C03	Dino Zardi (Univ. of Trento, I) and <i>Rampanelli</i> : History and analysis of the temperature series of Trento, Italy (1816-2008)	
C04	Joan Cuxart (Univ. IB, Palma, E), <i>Molinos, Martínez, Jiménez</i> and <i>Cunillera</i> : Conditioned climatology of the stably stratified nights in the Ebro basin	
C05	Mark Žagar (Univ. of Ljubljana, SI) and <i>Strajnar</i> : Radar-based hail climatology of eastern Slovenia	166
C06	<i>Michael Kunz</i> (KIT, Karlsruhe, D) and <i>Puskeiler</i> : Spatial variability and trends of hailstorm frequency and the relation to atmospheric characteristics in southwest Germany	168
C07	Pavol Faško (SHI, Bratislava, SK), <i>Lapin, Pecho</i> and <i>Mikulová</i> : Analysis of snow cover change in Slovakia in 1981-2008	170
C08	<i>Nadejda Petkova</i> (BAS, Sofia, BG), <i>Andronov</i> and <i>Koleva</i> : Snow cover variability in Bulgaria	
C09	Michael Fitzka (Univ. Bodenkultur, Vienna, A), <i>Simic, Weihs</i> and <i>Kromb-Kolb</i> : 15 years of spectral UV-measurements at Sonnblick observatory: Investigation of short- and long-term changes at a high altitude alpine station	172
C10	Maria Zoran (National Institute for Optoelectronics, Bukuresti, ROM): Satellite remote sensing assessment of climate risks and their impact on Romanian mountain forests	174
C11	Michael Sprenger (IAC ETH, Zurich, CH), Schlemmer and Martius: Detection and climatology of fronts in a high–resolution model reanalysis over the Alps	
C12	Christophe Lavaysse (LMD/IPSL, Palaiseau, F), <i>Drobinski</i> and <i>Vrac</i> : Downscaling precipitation and wind in the complex French Mediterranean region	
	sday ter blocks Bnn and Cmm: Session B "Boundary Layer Processes and Climate-2"	
B01	Peter Sheridan (MetOffice, Exeter, UK), <i>Wells, Vosper, Price, Ross, Brown, Mobbs</i> and <i>Horlacher</i> : COLPEX - Cold Pool Experiment	
B02	<i>Meinolf Kossmann</i> (DWD, Offenbach, D), <i>Hoch, Whiteman</i> and <i>Sievers</i> : Modelling of nocturnal drainage winds at Meteor Crater, Arizona, using KLAM_21	182
B03	Josep R. Miró (MSC, Barcelona, E) and <i>Pag</i> ès: Minimum temperatures classification at the Pyrenees area using Empirical Orthogonal Functions (EOF)	184
B04	<i>Marina Mileta</i> (DHMZ, Zagreb, CRO): Fog water collection with SFC during the period 2000-2008 in Croatia	186

 B09 Stephan de Wekker (Univ. of Virginia, Charlottesville, USA), Godwin and Emmitt: Wind- and aerosol structure in the Salinas Valley and adjacent mountains in California from airborne Doppler lidar data B10 Haraldur Ólafsson (Univ.s of Bergen, N & Reykjavík, Iceland), Rögnvaldsson, Reuder, Agústsson, Kristjánsson and Petersen: Monitoring the atmospheric boundary-layer in the Arctic at Gufuskálar, Iceland B11 Sandip Pal (Univ. of Hohenheim, Stuttgart, D), Behrendt, Riede, Schiller and Wulfmeyer: High resolution measurements of water vapor and aerosol fields with UHOH scanning DIAL system at Hornisgrinde B12 Marcus Radlach (Univ. of Hohenheim, Stuttgart, D) Behrendt, Pal and Wulfmeyer: Measurement of temperature and aerosol fields with rotational Raman lidar during the field campaign COPS at Hornisgrinde on 20th July 2007 B13 Tammy M. Weckwerth (NCAR, Boulder, USA), Wulfmeyer, Behrendt, Pal and Aoshima: Water Vapor DIAL and DOW Observations and Comparisons with Mesoscale Models in COPS B14 Luciana Rossato (INPE, Sao Jose dos Campos, Brazil), de Jeu and Alvalá: Validation of soil moisture in Brazil as derived from AMSR-E sensor observations for cerrado regions B15 Yann Largeron (LEGI, Grenoble, F), Staquet and Chemel: Mixing and transport in the stable atmosphere of an idealized Alpine valley 19 B16 Delia Arnold (INTE, Barcelona, E), Schicker, Seibert and Vargas: High resolution modelling of mountain and valley stations and its applications to complex dispersion conditions 19 B17 Ahmad Moghaddam (Univ. of Hormozgan, Iran), Taghavi and Khorsandi: 	B05	Lin-lin Qi (CAS, Beijing, China) and Sun: The application of the coupling model in the numerical simulation of the local radiation fog	oage 188
 Swiss Experiment: Application of a collaborative research platform to spatial interpolation validation B08 Christof Gromke (SLF, Davos, CH), Walter, Manes and Lehning: Aerodynamic roughness lengths of snow surfaces B09 Stephan de Wekker (Univ. of Virginia, Charlottesville, USA), Godwin and Emmitt: Wind- and aerosol structure in the Salinas Valley and adjacent mountains in California from airborne Doppler lidar data B10 Haraldur Ólafsson (Univ.s of Bergen, N & Reykjavík, Iceland), <i>Rögnvaldsson, Reuder, Agústsson, Kristjánsson and Petersen:</i> Monitoring the atmospheric boundary-layer in the Arctic at Gufuskálar, Iceland B11 Sandip Pal (Univ. of Hohenheim, Stuttgart, D), Behrendt, Riede, Schiller and Wulfmeyer: High resolution measurements of water vapor and aerosol fields with UHOH scanning DIAL system at Hornisgrinde B12 Marcus Radlach (Univ. of Hohenheim, Stuttgart, D), Behrendt, Pal and Wulfmeyer: Measurement of temperature and aerosol fields with rotational Raman lidar during the field campaign COPS at Hornisgrinde on 20th July 2007 B13 Tammy M. Weckwerth (NCAR, Boulder, USA), Wulfmeyer, Behrendt, Pal and Aoshima: Water Vapor DIAL and DOW Observations and Comparisons with Mesoscale Models in COPS B14 Luciana Rossato (INPE, Sao Jose dos Campos, Brazil), de Jeu and Alvalá: Validation of soil moisture in Brazil as derived from AMSR-E sensor observations for cerrado regions B15 Yann Largeron (LEGI, Grenoble, F), Staquet and Chernel: Mixing and transport in the stable atmosphere of an idealized Alpine valley 19 B16 Delia Arnold (INTE, Barcelona, E), Schicker, Seibert and Vargas: High resolution modelling of mountain and valley stations and its applications to complex dispersion conditions 19 B17 Ahmad Moghaddam (Univ. of Hormozgan, Iran), Taghavi and Khorsandi: 	B06		
 Aerodynamic roughness lengths of snow surfaces 19 809 Stephan de Wekker (Univ. of Virginia, Charlottesville, USA), Godwin and Emmitt: Wind- and aerosol structure in the Salinas Valley and adjacent mountains in California from airborne Doppler lidar data 810 Haraldur Ólafsson (Univ.s of Bergen, N & Reykjavík, Iceland), <i>Rögnvaldsson, Reuder, Agüstsson, Kristjánsson</i> and <i>Petersen</i>: Monitoring the atmospheric boundary-layer in the Arctic at Gufuskálar, Iceland 811 Sandip Pal (Univ. of Hohenheim, Stuttgart, D), <i>Behrendt, Riede, Schiller</i> and <i>Wulfmeyer</i>: High resolution measurements of water vapor and aerosol fields with UHOH scanning DIAL system at Hornisgrinde 812 Marcus Radlach (Univ. of Hohenheim, Stuttgart, D) <i>Behrendt, Pal</i> and <i>Wulfmeyer</i>: Measurement of temperature and aerosol fields with rotational Raman lidar during the field campaign COPS at Hornisgrinde on 20th July 2007 813 Tammy M. Weckwerth (NCAR, Boulder, USA), <i>Wulfmeyer, Behrendt, Pal</i> and Aoshima: Water Vapor DIAL and DOW Observations and Comparisons with Mesoscale Models in COPS 814 Luciana Rossato (INPE, Sao Jose dos Campos, Brazil), <i>de Jeu</i> and <i>Alvalá</i>: Validation of soil moisture in Brazil as derived from AMSR-E sensor observations for cerrado regions 815 Yann Largeron (LEGI, Grenoble, F), <i>Staquet</i> and <i>Chemel</i>: Mixing and transport in the stable atmosphere of an idealized Alpine valley 19 816 Delia Arnold (INTE, Barcelona, E), <i>Schicker, Seibert</i> and Vargas: High resolution modelling of mountain and valley stations and its applications to complex dispersion conditions 19 817 Ahmad Moghaddam (Univ. of Hormozgan, Iran), Taghavi and Khorsandi: 	B07	Swiss Experiment: Application of a collaborative research platform to spatial interpolation	
 Wind- and aerosol structure in the Salinas Valley and adjacent mountains in California from airborne Doppler lidar data B10 Haraldur Ólafsson (Univ.s of Bergen, N & Reykjavík, Iceland), <i>Rögnvaldsson, Reuder, Agústsson, Kristjánsson</i> and <i>Petersen</i>: Monitoring the atmospheric boundary-layer in the Arctic at Gufuskálar, Iceland B11 Sandip Pal (Univ. of Hohenheim, Stuttgart, D), <i>Behrendt, Riede, Schiller</i> and <i>Wulfmeyer</i>: High resolution measurements of water vapor and aerosol fields with UHOH scanning DIAL system at Hornisgrinde B12 Marcus Radlach (Univ. of Hohenheim, Stuttgart, D) <i>Behrendt, Pal</i> and <i>Wulfmeyer</i>: Measurement of temperature and aerosol fields with rotational Raman lidar during the field campaign COPS at Hornisgrinde on 20th July 2007 B13 Tammy M. Weckwerth (NCAR, Boulder, USA), <i>Wulfmeyer, Behrendt, Pal</i> and Aoshima: Water Vapor DIAL and DOW Observations and Comparisons with Mesoscale Models in COPS B14 Luciana Rossato (INPE, Sao Jose dos Campos, Brazil), <i>de Jeu</i> and <i>Alvalá</i>: Validation of soil moisture in Brazil as derived from AMSR-E sensor observations for cerrado regions B15 Yann Largeron (LEGI, Grenoble, F), <i>Staquet</i> and <i>Chemel</i>: Mixing and transport in the stable atmosphere of an idealized Alpine valley 19 B16 Delia Arnold (INTE, Barcelona, E), <i>Schicker, Seibert</i> and Vargas: High resolution modelling of mountain and valley stations and its applications to complex dispersion conditions 19 B17 Ahmad Moghaddam (Univ. of Hormozgan, Iran), Taghavi and Khorsandi: 	B08		190
 Agústsson, Kristjánsson and Petersen: Monitoring the atmospheric boundary-layer in the Arctic at Gufuskálar, Iceland B11 Sandip Pal (Univ. of Hohenheim, Stuttgart, D), Behrendt, Riede, Schiller and Wulfmeyer: High resolution measurements of water vapor and aerosol fields with UHOH scanning DIAL system at Hornisgrinde B12 Marcus Radlach (Univ. of Hohenheim, Stuttgart, D) Behrendt, Pal and Wulfmeyer: Measurement of temperature and aerosol fields with rotational Raman lidar during the field campaign COPS at Hornisgrinde on 20th July 2007 B13 Tammy M. Weckwerth (NCAR, Boulder, USA), Wulfmeyer, Behrendt, Pal and Aoshima: Water Vapor DIAL and DOW Observations and Comparisons with Mesoscale Models in COPS B14 Luciana Rossato (INPE, Sao Jose dos Campos, Brazil), de Jeu and Alvalá: Validation of soil moisture in Brazil as derived from AMSR-E sensor observations for cerrado regions B15 Yann Largeron (LEGI, Grenoble, F), Staquet and Chemel: Mixing and transport in the stable atmosphere of an idealized Alpine valley B16 Delia Arnold (INTE, Barcelona, E), Schicker, Seibert and Vargas: High resolution modelling of mountain and valley stations and its applications to complex dispersion conditions B17 Ahmad Moghaddam (Univ. of Hormozgan, Iran), Taghavi and Khorsandi: 	B09	Wind- and aerosol structure in the Salinas Valley and adjacent mountains in California	
 High resolution measurements of water vapor and aerosol fields with UHOH scanning DIAL system at Hornisgrinde B12 Marcus Radlach (Univ. of Hohenheim, Stuttgart, D) Behrendt, Pal and Wulfmeyer: Measurement of temperature and aerosol fields with rotational Raman lidar during the field campaign COPS at Hornisgrinde on 20th July 2007 B13 Tammy M. Weckwerth (NCAR, Boulder, USA), Wulfmeyer, Behrendt, Pal and Aoshima: Water Vapor DIAL and DOW Observations and Comparisons with Mesoscale Models in COPS B14 Luciana Rossato (INPE, Sao Jose dos Campos, Brazil), de Jeu and Alvalá: Validation of soil moisture in Brazil as derived from AMSR-E sensor observations for cerrado regions B15 Yann Largeron (LEGI, Grenoble, F), Staquet and Chemel: Mixing and transport in the stable atmosphere of an idealized Alpine valley 19 B16 Delia Arnold (INTE, Barcelona, E), Schicker, Seibert and Vargas: High resolution modelling of mountain and valley stations and its applications to complex dispersion conditions 19 B17 Ahmad Moghaddam (Univ. of Hormozgan, Iran), Taghavi and Khorsandi: 	B10	Ágústsson, Kristjánsson and Petersen:	192
 Measurement of temperature and aerosol fields with rotational Raman lidar during the field campaign COPS at Hornisgrinde on 20th July 2007 B13 Tammy M. Weckwerth (NCAR, Boulder, USA), Wulfmeyer, Behrendt, Pal and Aoshima: Water Vapor DIAL and DOW Observations and Comparisons with Mesoscale Models in COPS B14 Luciana Rossato (INPE, Sao Jose dos Campos, Brazil), de Jeu and Alvalá: Validation of soil moisture in Brazil as derived from AMSR-E sensor observations for cerrado regions B15 Yann Largeron (LEGI, Grenoble, F), Staquet and Chemel: Mixing and transport in the stable atmosphere of an idealized Alpine valley B16 Delia Arnold (INTE, Barcelona, E), Schicker, Seibert and Vargas: High resolution modelling of mountain and valley stations and its applications to complex dispersion conditions B17 Ahmad Moghaddam (Univ. of Hormozgan, Iran), Taghavi and Khorsandi: 	B11	High resolution measurements of water vapor and aerosol fields with UHOH scanning	
 Water Vapor DIAL and DOW Observations and Comparisons with Mesoscale Models in COPS B14 Luciana Rossato (INPE, Sao Jose dos Campos, Brazil), de Jeu and Alvalá: Validation of soil moisture in Brazil as derived from AMSR-E sensor observations for cerrado regions B15 Yann Largeron (LEGI, Grenoble, F), Staquet and Chemel: Mixing and transport in the stable atmosphere of an idealized Alpine valley B16 Delia Arnold (INTE, Barcelona, E), Schicker, Seibert and Vargas: High resolution modelling of mountain and valley stations and its applications to complex dispersion conditions B17 Ahmad Moghaddam (Univ. of Hormozgan, Iran), Taghavi and Khorsandi: 	B12	Measurement of temperature and aerosol fields with rotational Raman lidar during the	
 Validation of soil moisture in Brazil as derived from AMSR-E sensor observations for cerrado regions B15 Yann Largeron (LEGI, Grenoble, F), Staquet and Chemel: Mixing and transport in the stable atmosphere of an idealized Alpine valley B16 Delia Arnold (INTE, Barcelona, E), Schicker, Seibert and Vargas: High resolution modelling of mountain and valley stations and its applications to complex dispersion conditions B17 Ahmad Moghaddam (Univ. of Hormozgan, Iran), Taghavi and Khorsandi: 	B13	Water Vapor DIAL and DOW Observations and Comparisons with Mesoscale Models in	
 Mixing and transport in the stable atmosphere of an idealized Alpine valley B16 Delia Arnold (INTE, Barcelona, E), Schicker, Seibert and Vargas: High resolution modelling of mountain and valley stations and its applications to complex dispersion conditions B17 Ahmad Moghaddam (Univ. of Hormozgan, Iran), Taghavi and Khorsandi: 	B14	Validation of soil moisture in Brazil as derived from AMSR-E sensor observations for	
 High resolution modelling of mountain and valley stations and its applications to complex dispersion conditions B17 Ahmad Moghaddam (Univ. of Hormozgan, Iran), <i>Taghavi</i> and <i>Khorsandi</i>: 	B15		194
-	B16	High resolution modelling of mountain and valley stations and its applications to complex	196
Bandar Abbas costal city in the south of Iran	B17	Study convective cells impact on air pollution dispersion in boundary layer on	
 B18 Željko Vecenaj (Univ. of Zagreb, CRO), de Wekker and Grubišić: Mountain wave related turbulence derived from sonic anemometers and an elastic backscatter Lidar 	B18	Mountain wave related turbulence derived from sonic anemometers and an elastic	198

B19	Željko Vecenaj (Univ. of Zagreb, CRO), <i>Grubišić</i> and <i>Grisogono</i> : Along-coast features of the bora related turbulence	page 200
B20	Dino Zardi (Univ. of Trento, I), <i>de Franceschi, Tagliazucca</i> and <i>Tampieri</i> : Analysis of second order moments in the surface layer turbulence in an Alpine valley	202
B21	Pak Wai Chan (Hong Kong Observatory, China): Validating turbulence parameterization schemes of a numerical model using eddy dissipation rate measurements in terrain-disrupted airflow	204
B22	Norbert Kalthoff (KIT, Karlsruhe, D), Bischoff-Gauss, Khodayar, Fiebig-Wittmaack and Montecinos: The diurnal cycle of the convective boundary layer over an arid Andes valley: Observations and model simulations	
B23	- withdrawn -	
B24	Tammy M. Weckwerth (NCAR, Boulder, USA) and Wilson: Radar climatology of convection initiation in the COPS Region	
B25	<i>Victoria</i> Smith (Univ. of Leeds, UK), <i>Hobby, Mobbs</i> and <i>Burton</i> : Detailed analysis of valley flows in complex terrain: A case study from the COPS field experiment	
B26	Sharon Zhong (Mich.State Univ., East Lansing, USA), Vandeuse, Shortridge and Bian: Estimating and testing the topographic amplification factor using GIS method and weather data from the western United States	206
B27	<i>Thierry Robert-Luciani</i> (ARPAV, Arabba, I), and <i>Marig</i> o: Winter high pressare: Mixing air mechanism in the Belluno pre-Alpine basin	208
B28	Rahela Žabkar (Univ. of Ljubljana, SI) and <i>Rakovec</i> : WRF-Chem study of the high ozone episode dynamics over the complex terrain of Slovenia	210
B29	Ralph Burton (Univ. of Leeds, UK), <i>Mobbs, Gadian</i> and <i>V. Smith</i> : Sensitivity of the WRF model to boundary-layer forcing: Orographic test cases and idealised studies	
B30	Dana Micu (Romanian Academy, Bukuresti, ROM), <i>Cheval</i> and <i>Baciu</i> : Heat waves in the Romanian Carpathians during the cold season	212
B31	<i>Kirsten Warrach-Sagi</i> (Univ. of Hohenheim, Stuttgart, D): Streamflow data assimilation for root zone soil moisture analysis	
B32	Andrew Ross (Univ. of Leeds, UK): Topographic effects on boundary-layer/forest-canopy exchange of gases	

C13 Zeljko **Majstorovic** (Hydromet. Institute, Sarajevo, BiH), Zulum, Voljevica and Hodzic: Impacts of climate changes to the wider Sarajevo region

C14 Jan Kysely (IAP, Prague, CZ): Trends in heavy precipitation in mountainous and lowland areas in central Europe: Are the differences related to changes in circulation?	page 176
C15 <i>Milan Lapin</i> (Univ. Bratislava, SK) and <i>Kremler</i> : Scenarios of air humidity and saturation deficit change for Slovakia	178
C16 Marian Melo (Univ. Bratislava, SK), Lapin and Damborska: Shift of climatic regions in mountainous parts of Slovakia	
C17 <i>Luis Mendes Cherno</i> (Météo. Nationale, Bissau, Guinée-Bissau): Étude de l'impact de la variabilité du climat et des changements climatiques sur la Guinée-Bissau	180
<u>Thursday</u> Poster blocks Dnn and Snn: Session C "Dynamics and Snow"	
D01 Martina Tudor (DHMZ, Zagreb, CRO): Case study of bura of 1st and 3rd February 2007	214
D02 Ivana Stiperski (DHMZ, Zagreb, CRO), Ivančan-Picek and Grubišić: The complex bora flow in the lee of southern Velebit	216
D03 <i>G. Nína</i> Petersen (Met Office, Reykjavík, Iceland), <i>Renfrew</i> and <i>Moore</i> : An overview of barrier winds off southeastern Greenland during the Greenland flow distortion experiment	
D04 <i>Richard Werner</i> (Dornbirn, A): Synchronous strong wind conditions in the middle alpine Region	
D05 <i>Michael</i> Sprenger (IAC ETH, Zurich, CH), <i>Jenker, Schwierz</i> and <i>Dierer</i> : Objective foehn prediction based upon the Adaboost algorithm	
D06 Florian Pfurtscheller (IMGI, Innsbruck, A) and <i>Gohm</i> : Orographic enhancement of severe windstorms in the Austrian Alps: Two case studies	218
D07 Klaus Burri (AGF, Zurich, CH), Dürr, Gutermann, Häberli, Neururer, Richner and Werner: Foehn diagnosis and model verification	220
D08 Christoph Knigge (Univ. of Hannover, D), Etling, Paci and Eiff: Laboratory experiments on mountain-induced rotors	222
D09 - withdrawn -	
D10 Susanne Drechsel (IMGI, Innsbruck, A), <i>Mayr</i> and <i>Chow</i> : Comparison of scanning strategies for 3D wind retrieval from dual Doppler lidar measurements	
D11 Vanda Grubišić (Univ. of Vienna, A), Xiao, Haimov, French and Oolman: Lower-tropospheric waves and wave-induced turbulence zones: Insights from T-REX	

D12	Ivana Stiperski (DHMZ, Zagreb, CRO) and <i>Grubišić</i> : Boundary layer effects on lee wave resonance in the semi-T-REX environment	page
D13	Thomas Raab (Univ. of Innsbruck, A), <i>Mayr</i> and <i>Zängl</i> : WRF performance in complex terrain: A parameter study on downslope windstorms	
D14	Haraldur Ólafsson (Univ.s of Bergen, N and Reykjavík, Iceland), <i>Shapiro, Ágústsson</i> and <i>Kristjánsson</i> : The Cape Tobin jet	224
D15	<i>Tiina Kilpeläinen</i> , (Univ. of Bergen, N) and <i>Ólafsson</i> : Simulations of mesoscale flow over an Arctic fjord	226
D16	<i>Kristian Horvath</i> , (DHMZ, Zagreb, CRO), <i>Bajić</i> and <i>Ivatek-Šahdan</i> : Dynamical downscaling of wind resources in complex terrain of Croatia	
D17	<i>Eirik M. Samuelsen</i> (Meteorological Institute, Tromsø, N), <i>Grønås</i> and <i>Ólafsson</i> : Local winds during a cold air outbreak in northern Norway	
D18	Hálfdán Ágústsson (Univ. of Iceland, Reykjavík, Iceland) and Ólafsson: Extreme turbulence in the wake of SE-Iceland	228
D19	<i>Beathe</i> Tveita (Storm Weather Centre, Bergen, N), <i>Ólafsson, Sandvik</i> and <i>Hagen</i> : The sensitivity of the atmospheric flow to Greenland in a case of extreme winds	230
D20	Berit Hagen (Meteorological Institute, Bergen, N), Ólafsson, Sandvik and Tveita: Greenland, the sea ice and extreme winds	232
D21	Pak Wai Chan (Hong Kong Observatory, China) and Cheung: "Up-hill effect" on the winds at the Hong Kong International Airport in strong northerly winds associated with tropical cyclones	234
D22	Haraldur Ólafsson (Univ.s of Bergen, N and Reykjavík, Iceland) and <i>Petersen</i> : Cyclogenesis in the lee of Iceland	
D23	Uroš Strajnar (EARS, Ljubljana, SI): Are tornadoes possible also in Slovenia? Case study of the extreme event of 13 and 14 July 2008	236
D24	<i>Shuhua</i> Yu (CMA, Chengdu, China), <i>Gao</i> and <i>Xiao</i> : Diagnosis of the effect of south-westerlies on the Tibetan vortex moving east	
D25	Walburga Wilms-Grabe (KIT, Karlsruhre, D), Corsmeier, Junkermann, Kottmeier, Holland, Geiss and Neiniger: Transport and chemical conversion in convective systems above complex terrain	238
D26	Andrea Buzzi (ISAC-CNR, Bologna, I) and Catania: Dynamical and physical processes characterizing upper-level cut-off lows in winter	240
D27	<i>Alan Gadian</i> (Univ. of Leeds, UK), <i>Lock, Coals</i> and <i>Mobbs</i> : Exploring a cut-cell approach for model simulations of flow over hills	242
D28	Hans Volkert (DLR, Oberpfaffenhofe, D): The summer of COPS-2007: Multi-scale dynamics visualized by variable-speed time-lapse satellite imagery	244

S01	Massimiliano Fazzini (Univ. of Ferrara, I), <i>Romeo</i> and <i>Giallatini</i> : Snow in the central Apennines (peninsular Italy): The first analysis on 30 years of snow and temperature data	page
S02	Massimiliano Fazzini (Univ. of Ferrara, I) and <i>Gaddo</i> : Relationship between climatic parameters and morphology and duration of snow cover at microscale: Preliminary study in three major ski areas of the territory of Trentino (Italian Eastern Alps)	246
S03	Silvia Terzago (Univ. of Turin, I), <i>Cremonini</i> and <i>Fratianni</i> : Snow precipitation variability in the Western Alps of Italy: Evaluation of an algorithm for the survey of the snow cover through satellites images	248
S04	Ralf Becker (DWD, Offenbach, D) and <i>Bisolli</i> : Using polar-orbiting weather satellite data to estimate the snowlines of central-European mountains	250
S05	<i>Clemens Teutsch</i> (Univ. of Innsbruck, A) and <i>Mayr</i> : The correlation of new snow density and water equivalent	
S06	Manfred Dorninger (Univ. of Vienna, A): A new device for accurate measurements of meteorological parameters in a snow rich environment	252
S07	<i>Christian</i> Hauck (Univ. de Fribourg, CH), <i>Engelhardt</i> and <i>Hilbich</i> : Numerical modelling and geophysical monitoring of the sensitivity of alpine permafrost to climate change	