Aircraft observations of NO, NOy, CO, and O3 in the upper troposphere from 60°N to 60°S - Interhemispheric differences at midlatitudes

Janine Baehr, Hans Schlager, Helmut Ziereis, Paul Stock, Peter van Velthoven, Reinhold Busen, Johan Ström, and Ulrich Schumann

Received 16 January 2003; revised 8 May 2003; accepted 14 May 2003; published 14 June 2003.

[1] Measurements of NO, NOy, CO, and O3 made in the middle and upper troposphere over Punta Arenas, Chile (53°S) and Prestwick, Scotland (55°N) during the INCA (Interhemispheric Differences in Cirrus Properties from Anthropogenic Emissions) experiment in 2000 are used to examine the interhemispheric differences in the abundance of these species during local autumn. Median mixing ratios of NO, NOy, O3, and CO in the upper troposphere (8 km-tropopause) are 4.5, 3, 1.5 and 1.2 times higher over Prestwick compared to Punta Arenas, respectively. Corresponding enhancement factors for the middle troposphere are 5, 7.8, 1.5, and 1.4. The present data represent a considerable extension of the sparse NO and NOy data so far available for the middle and upper troposphere at southern midlatitudes. INDEX TERMS: 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; 0366 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry. Citation: Baehr, J., H. Schlager, H. Ziereis, P. Stock, P. van Velthoven, R. Busen, J. Ström, and U. Schumann, Aircraft observations of NO, NOy, CO, and O3 in the upper troposphere from 60°N to 60°S - Interhemispheric differences at midlatitudes, Geophys. Res. Lett., 30(11), 1598, doi:10.1029/2003GL016935, 2003.

1. Introduction

[2] Large-scale observations of the meridional distribution of trace gases in the troposphere are important for an understanding of the dynamical and chemical processes that control the globalization of air pollution. Amongst the most important anthropogenic pollutants are nitrogen oxides (NOx), hydrocarbons, and carbon monoxide (CO) since they control the photochemical production of ozone (O3) in the troposphere. Ozone plays a key role in determining the oxidizing power of the global atmosphere, and thus the capacity of the atmosphere to cleanse itself. [Logan et al., 1981]. The largest fraction of O3 precursors is emitted in the Northern Hemisphere (NH) and interhemispheric exchange has a major influence on the global distribution of these gases in the troposphere and on the resulting O3 abundances [Hartley and Black, 1995].

[3] The present knowledge of the large-scale distribution of O3 precursors in the upper troposphere is largely based on aircraft observations [Emmons et al., 2000]. However, only sparse data are available for mid-latitudes in the SH where anthropogenic NOx has a particularly large impact on the O3 abundance and NOx-levels are near the turnover point for net O3 production versus net O3 loss [Ehhalt and Rohrer, 1995]. Previous NOx measurements in the free troposphere at SH mid-latitudes are mainly available from the meridional aircraft campaigns STRATOZ III (Stratospheric Ozone Experiment) in June 1984 [Drummond et al., 1988] and TROPOZ II (Tropospheric Ozone Experiment) in January/February 1991 [Jonquieres and Marenco, 1998; Rohrer et al., 1997]. However, the median NO and NOy concentrations for the middle and upper troposphere from both campaigns differ considerably at SH mid-latitudes. It is not clear whether this is due to different detection limits for the instruments used, the snapshot nature of the observations from only a few flights, or the different seasons in which the measurements have been made.

[4] Here we report on aircraft chemical measurements from 60°N - 60°S performed during the INCA experiment along a similar route as STRATOZ III and TROPOZ II, however, including multiple flights from two main sites at mid-latitudes in the SH and NH. Each campaign covered a period of three weeks, hence these data can provide a more representative picture of the middle and upper tropospheric abundance of nitrogen oxides and other chemical species measured for mid-latitudes and of the interhemispheric difference for autumn conditions. The measurements performed during the flights from Punta Arenas provided the first detailed NO and NOy distributions near 60°S.

2. Experiment

[5] The INCA expedition included two main field campaigns in Punta Arenas, Chile (53°S) and Prestwick, Scotland (55°N) and used the DLR Falcon with a ceiling altitude of 12 km. The main objective of INCA was to determine interhemispheric differences in cirrus properties of clean compared to polluted air masses for mid-latitudes. The Falcon was mainly instrumented with measurement systems for aerosols and cloud elements. In addition, some selected chemical species were measured to characterize the origin and degree of pollution of the air masses sampled. The Punta Arenas campaign was performed from 23 March to 13 April 2000 and included 10 scientific missions. The second campaign from Prestwick was conducted from 27...
September until 12 October 2000 and included 9 scientific flights. In addition, Falcon measurements were performed in the upper troposphere during 14 transit flight sections from Germany to Punta Arenas and back covering an extended latitudinal range from 60°N to 60°S. The locations of the deployment sites and the routing of the local and transit flights are depicted in Figure 1. Also included in Figure 1 are typical backward trajectories to illustrate the transport pathways of the air masses sampled over Prestwick, Punta Arenas and tropical South America.

Measurements used in this study include NO, NO\textsubscript{y}, O\textsubscript{3}, and CO, photolysis frequency of NO\textsubscript{2}, and meteorological parameters. The instruments used have already been described [Schlager et al., 1997; Ziereis et al., 2000; Gerbig et al., 1996]. Briefly, NO was measured using NO-O\textsubscript{3} chemiluminescence with a time resolution of 1 s and an precision/accuracy of 5/10% and 10/15% for concentration levels of 1 and 0.1 nmol/mol, respectively, and a detection limit of 2 pmol/mol. Total reactive nitrogen (NO\textsubscript{y} = NO + NO\textsubscript{2} + NO\textsubscript{3} + PAN + HNO\textsubscript{3} + ...) was measured using a second NO detector combined with a heated gold converter that reduces oxidized NO\textsubscript{y} species to NO [Fahey et al., 1985]. For the NO\textsubscript{y} gas phase measurements a backward facing inlet was used preventing enhanced sampling of NO\textsubscript{y} contained in aerosols and excluding the sampling of ice particles. O\textsubscript{3} and CO were detected by UV-absorption and VUV-fluorescence, respectively, with an accuracy of 5% for both measurements and a precision of 1 and 6 nmol/mol, respectively. The photolysis frequency (jNO\textsubscript{2}) was measured using a filter radiometer with an accuracy of 18%. NO\textsubscript{2} was calculated from measured daytime NO (solar zenith angle <80°), O\textsubscript{3}, temperature, and jNO\textsubscript{2} assuming simple photochemical steady state between NO and NO\textsubscript{2} [e.g. Schlager et al., 1997]. Air temperature, static pressure, wind, and aircraft position were available from standard instruments on board the Falcon. In addition, meteorological analyses from ECMWF are used including backward trajectories for air masses sampled during the flights.

3. Results and Discussion

3.1. Meridional Distribution

Figure 2 shows distributions of NO, NO\textsubscript{y}, CO, and O\textsubscript{3} measured in the upper troposphere between 60°N and 60°S during the INCA transfer flights from Germany to Punta Arenas. Given are median values and 25% and 75% percentiles indicated by whiskers. For comparison, corresponding TROPOZ II data are included. Shaded area indicates measurements in the vicinity of the ITCZ.
measured during INCA are much smaller than observed during TROPOZ II. Sharp air mass transitions were observed in the upper troposphere over tropical South America in the vicinity of the ITCZ. Here strongly enhanced CO (118–176), moderately enhanced NO and NO\textsubscript{y} (0.04–0.8 and 0.3–1.8) and very low O\textsubscript{3} (21–48) mixing ratios (nmol/mol) were observed in the upper troposphere between 12\textdegree}N and 24\textdegree}S. According to backward trajectory analysis corresponding air masses originate mainly from lower heights over the Amazon basin. These air masses encountered deep convection 1–3 days before the sampling time as shown by GOES 8 cloud images. The Large-Scale Biosphere-Atmosphere Experiment in Amazonia [Gatti et al., 2001] revealed that the abundance of CO, NO, and NO\textsubscript{y} in the boundary layer in the Amazon basin during the wet season is mostly controlled by biogenic emissions with a small contribution of industrial and traffic emissions and no influence of biomass burning. Typical CO and NO volume mixing ratios measured in the boundary layer during the LBA 2000 wet season campaign were 100–200 and 0.05–0.1 nmol/mol, respectively. These mixing ratios are consistent with the INCA observations in air masses originating from the Amazon basin. During INCA the intense convective activity over the Amazon basin was associated with an upper level anticyclonic flow over tropical South America (see trajectories in Figure 1). According to Jonqueres and Marenco [1998] these meteorological conditions occur repeatedly during the wet season and cause enhanced levels of CO in the upper troposphere over a large area. In addition trajectories suggest, that long-range transport of CO from biomass burning sources in Western Africa may have partly contributed to upper tropospheric CO over tropical South America.

At latitudes between 4\textdegree}S and 8\textdegree}S remarkably high NO and NO\textsubscript{y} mixing ratios of 0.8 and 1.8 nmol/mol, respectively, were observed (see Figure 2). GOES 8 images show large convective cells upwind of this flight section with lightning activity only 8 h prior to the measurements as detected by OTD (Optical Transient Detector). Fresh lightning produced NO may explain the high NO and NO\textsubscript{y} mixing ratios and the high NO/NO\textsubscript{y} ratio of 0.46 mol/mol observed in these samples.

3.2. Interhemispheric Differences

The large data set acquired during the multiple flights from Punta Arenas and Prestwick at the same latitude and local season allows a representative interhemispheric comparison. Figure 3 shows vertical distributions of median NO\textsubscript{y}, NO\textsubscript{y}, O\textsubscript{3}, and CO volume mixing ratios obtained from all local INCA flights from Punta Arenas and Prestwick, respectively. For comparison the POLINAT II and NOXAR values are also included in Figure 3. The NO\textsubscript{y} and CO concentrations increase with altitude over Punta Arenas and decrease with altitude over Prestwick. This is typical for remote regions and regions influenced by continental surface sources, respectively. The increasing NO\textsubscript{y} and CO mixing ratios with altitude over Punta Arenas indicate that there is a minimal influence of surface sources in the vicinity of the measurement region. Sampling of aged pristine air masses here is also indicated by the small variation of the profiles.

Table 1. Median and Mean Concentrations (Standard Deviations in Brackets) of Selected Campaigns For the Middle (4–8 km) and Upper Troposphere (8 km-Tropopause) at Mid-Latitudes in the SH Compared to the NH

<table>
<thead>
<tr>
<th>Campaign</th>
<th>Location and No. of Flights</th>
<th>Averaging Area</th>
<th>Season</th>
<th>NO pmol/mol</th>
<th>NO\textsubscript{y} pmol/mol</th>
<th>O\textsubscript{3} nmol/mol</th>
<th>CO nmol/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4–8 >8</td>
<td>4–8 >8</td>
<td>4–8 >8</td>
<td>4–8 >8</td>
</tr>
<tr>
<td>INCA</td>
<td>Punta Arenas: 9</td>
<td>50\textdegree}–60\textdegree}S, autumn</td>
<td>5 9</td>
<td>46 76</td>
<td>31 32</td>
<td>52 57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TROPOZ II: 1</td>
<td>50\textdegree}–55\textdegree}S, summer</td>
<td>22 62</td>
<td>176 239</td>
<td>37 43</td>
<td>41 54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STRATOZ III: 2</td>
<td>50\textdegree}–60\textdegree}W, winter</td>
<td>4 5</td>
<td>- -</td>
<td>24 32</td>
<td>71 73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAOE: Punta Arenas: 9</td>
<td>~45\textdegree}–60\textdegree}W, winter/spring</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INCA: Prestwick: 9</td>
<td>54\textdegree}–61\textdegree}N, autumn</td>
<td>25 41</td>
<td>357 225</td>
<td>46 46</td>
<td>74 68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLINAT II: 14</td>
<td>49\textdegree}–61\textdegree}N, autumn</td>
<td>11 55</td>
<td>241 345</td>
<td>58 81</td>
<td>74 80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SONEXc: 14</td>
<td>50\textdegree}–60\textdegree}N, autumn</td>
<td>14 15</td>
<td>243(14) 378(12)</td>
<td>59(17) 85(9)</td>
<td>73(11) 85(9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOXARd: 82</td>
<td>50\textdegree}–60\textdegree}N, autumn</td>
<td>18 19</td>
<td>30–98</td>
<td>48 46</td>
<td>80 75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10\textdegree}W–8\textdegree}E</td>
<td>131(194)</td>
<td>152(223)</td>
<td>54(13)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aAirborne Antarctic Ozone Experiment [Murphy et al., 1993].
bSubsonic Assessment Ozone and Nitrogen Experiment.
cMeasurements of Nitrogen Oxides and ozone along Air routes.
dMeasurements close to detection limit.
eNO\textsubscript{y}.
observed from flight to flight. In addition the backward
trajectory calculations show that the air masses probed
originate from the Southern Pacific Ocean.

[11] Figure 4 depicts mean NO$_x$/NO$_y$, NO$_x$/O$_3$, O$_3$ and CO
profiles relative to the tropopause of the individual flights.
The low NO$_x$/NO$_y$ ratios (<0.14 mol/mol) in the middle and
upper troposphere confirm that relatively clean air was
measured over Punta Arenas whereas the profiles over
Prestwick show much higher NO$_x$/NO$_y$ ratios indicating
the influence of fresh NO$_x$ emissions. The NO$_x$/O$_3$ ratios
measured in the lower stratosphere of 0.004 and 0.005 in
the SH and NH, respectively, are comparable to the ratios
found by Murphy et al. [1993]. The significantly higher ratio
of about 0.02 observed in the NH tropopause-region reflects
the transport of surface emissions by convection into the
upper troposphere measured specially during two flights on
during INCA in Prestwick because in autumn 2000 the
ascent region of the jet stream exit was accentuated close
to the UK [Blackburn and Hoskins, 2001].

[12] The median concentrations obtained from all INCA
mid-latitude flights in the SH and NH for the middle
(4–8 km) and upper troposphere (8 km - tropopause) are
summarized in Table 1. In the upper troposphere NO, NO$_x$, O$_x$,
and CO concentrations are factors of 4.5, 3, 1.5 and 1.2
higher over Prestwick compared to Punta Arenas.
Corresponding enhancements factors for the middle tropo-
sphere are 5, 7.8, 1.5, and 1.4, respectively. For comparison,
corresponding median concentrations for previous cam-
paigns are included in Table 1: For the Southern mid-
latitudes only data of different seasons were available which
exhibit a large scatter possibly due to the more variable
nitrogen oxide levels in the different seasons. Significantly
higher NO$_x$ and CO values were observed during AAOE
and STRATOZ III. These measurements were performed
during the dry season with expected long-range transport
from biomass burning sites. In addition it is very likely that
signal noise contributed to the relatively high NO values
reported for TROPOZ II (NO detection limit for these
measurements was 50 pmol/mol, [Rohrer et al., 1997]).

[13] For the NH we included only data sampled during
major campaigns performed during the same season from
POLINAT II [Schumann et al., 2000], SONEX [Singh et al.,
1999], and NOXAR 1995 [Brunner et al., 2001]. In general
there is a reasonable agreement between the median and
mean concentrations calculated for the NH campaigns.

4. Conclusion

[14] During INCA a series of tropospheric profiles of NO$_x$,
NO$_y$, CO, and O$_3$ were measured at mid-latitudes in the SH, a
region so far only poorly explored. These data provide
median NO$_x$ and NO$_x$ mixing ratios for the middle and upper
troposphere that can be considered more representative for
this region than previous observations from single research
flights. These data represent a valuable contribution to a
global climatology of reactive nitrogen species and are useful
for evaluations of global chemistry transport models.

[15] The INCA measurements over tropical South Amer-
ica agree well with the TROPOZ II data and confirm earlier
TROPOZ II observations of an extended upper tropospheric
layer of enhanced CO and NO in this region during the wet
season. This is due to a persistent anticyclonic flow (Bo-
livian high) in the upper troposphere which redistributes
convectively uplifted air masses from the boundary layer of
the Amazon basin over a large area in South America
[Jonquieres and Marenco, 1998].

[16] Acknowledgments. We would like to thank the DLR Flight
Department for the expert support during the INCA campaigns.
This research has been funded in part by the Commission of the European
Community under contract EVK2-CT-1999-00039.

References

Blackburn, M., and B. J. Hoskins, The UK record-breaking wet autumn
2000. Univ. Global Atmospheric Modelling Programme, UGAMP News-

Brunner, D., J. Staehelin, H. Wernli, and U. Schumann, Nitrogen oxides
and ozone in the tropopause region of the Northern Hemisphere: Mea-

Drummond, J. W., D. H. Ehhalt, and A. Volz, Measurements of nitric oxide
between 0–12 km altitude and 67°N–60°S latitude obtained during

Ehhalt, D. H., and F. Rohrer, The impact of commercial aircraft on tropo-
spheric ozone, in “The Chemistry of the Atmosphere-Oxidants and Oxida-
tion in the Earth Atmosphere”, Proc. of the 7th BOC Pristyle Conference,

Emmons, L. K., et al., Data composites of airborne observations of tropo-
spheric ozone and its precursors, J. Geophys. Res., 105, 20,497–20,538,
2000.

Fahey, D. W., et al., C. S. Eubank, G. Hübler, and F. C. Fehsenfeld,
Evaluating a catalytic reduction technique for the measurement of total
reactive odd nitrogen NOy in the Atmosphere, J. of Atmos. Chem., 3,

Gatti, L. V., et al., Trace gas measurements in the Amazon basin during the
wet and dry season, in “A changing atmosphere”, Proc. of 8th European
Symposium on the Physico-Chemical Behaviour of Atmospheric Pollu-

McKenna, Fast response resonance fluorescence CO measurements aboard the
C130: Instrument characterization and measurements made during
North Atlantic Regional Experiment 1993, J. Geophys. Res., 101,

Hartley, D. E., and R. X. Black, Mechanistic analysis of interhemispheric

Jonquères, I., and A. Marenco, Distribution by deep convection and long-
range transport of CO and CH$_4$ emissions from the Amazon basin, as
observed by airborne campaign TROPOZ II during the wet season,

Logan, J. A., et al., Tropospheric chemistry: A global perspective, J. Geo-

Murphy, D. M., et al., Reactive Nitrogen and its Correlations with Ozone in
the lower stratosphere and upper troposphere, J. Geophys. Res., 98,

Rohrer, F., D. Brüning, and D. H. Ehhalt, Tropospheric mixing ratios of NO
obtained during TROPOZ II in the latitude region 67°N–56°S, J. Geo-

Schlager, H., et al., In situ observations of air traffic emission signatures in
the North Atlantic flight corridor, J. Geophys. Res., 102, 10,739–10,750,
1997.

Schumann, U., et al., Pollution from aircraft emissions in the North Atlantic
flight corridor: Overview on the POLINAT projects, J. Geophys. Res.,

mission and coordinated POLINAT activities: Overview and accomplish-

Ziereis, H., H. Schlager, P. Schulte, P. F. J. van Velthoven, and F. Slemr,
Distributions of NO, NO$_x$, and NO$_y$ in the upper troposphere and lower
stratosphere between 28° and 61° during POLINAT, J. Geophys. Res.,

J. Baehr, R. Busen, H. Schlager, U. Schumann, P. Stock, and H. Ziereis,
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der
Atmosphäre, Oberpfaffenhofen, Germany.

P. van Velthoven, Royal Netherlands Meteorological Institute (KNMI),
Atmospheric Composition Research, De Bilt, Netherlands.

J. Ström, Stockholm Univ., Institute of Applied Environmental Research,
Stockholm, Sweden.