The phase diagram of soaring: flight mode transitions in combinations of isolated and aligned lift patterns

Olivier Liechti
Winterthur, Switzerland

OSTIV congress
Lüssee, 12 August, 2008
Outline

• Introduction

• PFD with **thermals**

• PFD with **wind** and **thermals**
Soaring in **wind** and **thermals**

- Wave
- Ridge lift
- Thermals
- Combination of W and T
Wave: 13 h, 2'400 km, 192 kph
Ridge: 8.5 h, 1'180 km, 138 kph
Thermals: 7.75 h, 1‘186 km, 153 kph

173 kph

80 kph
Combination: 13.5 h, 1'400 km, 103 kph
Combination: 10.5 h, 1'430 km, 142 kph
Combination: 14.5 h, 1‘900 km, 132 kph
Flight distance in cross-country soaring
Soaring speed

- climb rate
- spatial lift distribution: isolated, aligned
- flight polar
- pilot skill and experience

Weather controls the duration, the strength and the spatial distribution of updrafts.

Predictions of these weather elements provide the potential flight distance (PFD).
Outline

• Introduction

• PFD with thermals

• PFD with wind and thermals
Regional thermal forecast

Stratiform Clouds
Cumulus Clouds

cross-country conditions

Source: pc-met@DWD
Climb rate --> cross-country speed

• flight polar

• speed-to-fly theory for *isolated* lift

• cross-country speed

• potential flight distance (PFD)
Flight polar

V_z [m/s]

[m/s]

0 10 20 30 40 50

[km/h]

0 10 20 30 40 50 60 70

-1 -2 -3 -4

0 10 20 30 40 50 60 70 80 90 100

-1 -2 -3 -4

124 (1:53, 100 km/h)
114 (1:47, 96 km/h)
100 (1:39, 90 km/h)
84 (1:30, 80 km/h)
77 (1:27, 55 km/h)
51 (1:12, 48 km/h)
39 (1:5, 30 km/h)

Archaeopteryx
Hangglider
Paraglider
Sailplanes

Handicap
(BGR@speed)

ARCHAEOPTERYX
SEGFLUGZEUGE
SAILPLANES
HANGLIDERS
PARAGLIDERS

ANALYSEN & KONZEPTE • Dr. O. Liechti • CH-8404 Winterthur
Optimum cross-country speed

- **Handicap (BGR):**
 - 124 (1:53) 25 m
 - 114 (1:47) 18 m
 - 100 (1:39) 15 m
 - 84 (1:30) 15 m old
 - 77 (1:27) Archaeopteryx
 - 50 (1:12) Hanglider
 - 38 (1:5) Paraglider

- **V_{XC} [kph]**
 - 120
 - 110
 - 100
 - 90
 - 80
 - 70
 - 60
 - 50
 - 40
 - 30
 - 20
 - 10
 - 0

- **climb rate [m/s] thermals**
 - 3
 - 2
 - 1
 - 0
Speed-to-fly theory

flight path vectors

speed vectors
result: $V_{\text{Glide}}(w_{\text{Thermal}})$, $V_{\text{Track}}(w_{\text{Thermal}})$
Potential flight distance (PFD)
PFD map
Outline

• Introduction

• PFD with thermals

• PFD with wind and thermals
Approach

- Wind induces airmass vertical motion in aligned patterns

- Speed-to-fly theory with airmass vertical motion during the glide
Speed-to-fly in **sinking** airmass

Path vectors
- track
- glide
- climb
- downdraft

Speed vectors
- w [m/s]
- v [kph]

Graphical representation
- Speed vectors for different wind conditions
- Path vectors showing track, climb, glide, and downdraft.
Speed-to-fly in rising airmass

Path vectors

- **Track**
- **Glide**
- **Climb**
- **Airmass updraft**

Speed vectors

With sufficient **airmass updraft** the minimum sink of the glider is compensated
V_{Track} in rising airmass (standard class)

![Graph showing V_{Track} and track speed against climb rate.]

- **Aligned lift**
 - 2.4 m/s
 - 1.8 m/s
 - 1.5 m/s
 - 1.2 m/s
 - 1.0 m/s
 - 0.8 m/s
 - 0.6 m/s
 - 0.5 m/s
 - 0.3 m/s
 - 0.0 m/s

- **Circle & glide mode**
 - Pure glide mode in strong aligned lift
 - Pure glide mode in weak aligned lift

- **Standard class: 44 @ 92 km/h (33 kg/m²)**
V_{track} in rising airmass (Open class)

XC speed [kph]

- **aligned lift**
 - 54 @ 101 km/h (42 kg/m2)
 - 1.2 m/s
 - 1.0 m/s
 - 0.8 m/s
 - 0.6 m/s
- **pure glide mode**
 - 1.8 m/s
 - 1.6 m/s
 - 1.4 m/s
- **circle & glide mode**
 - 1.2 m/s
 - 1.0 m/s
 - 0.8 m/s
 - 0.6 m/s

Climb rate [m/s] when circling

- **pure glide mode in strong aligned lift**
- **circle & glide mode in weak aligned lift**
Phase diagram of soaring

Climb rate in isolated lift

V_{track} = 100 kph

Open class: 54 @ 101 km/h (42 kg/m²)
Summary

• Speed-to-fly theory for isolated lift can be extended to aligned lift

• The time fraction spent climbing is the order parameter controlling the phase transition from „climb & glide mode“ to „pure glide mode“

• Predicted aligned lift can be used for flight planning ... How about such predictions?