Comparison of TRMM LIS and PR with ground based lightning and radar observations for the TROCCINOX/ TroCCiBras/HIBISCUS field campaign

Thorsten Fehr, IPA/DLR, Germany Gerhard Held, IPMet/UNESP, Brazil Osmar Pinto, ELAT/INPE, Brazil

Need for Lightning Information

Total Lightning:

- Operational ground based system optimized for cloud-to-ground lightning localization
- ▶ Important contribution of Nitrogen oxides (NO_x) by intra-cloud lightning
- For the extrapolation of the regional NO_x results an estimate of the total lightning activity is necessary

Parameterization of lightning:

- Extrapolation of storm-scale lightning results to a wider sample
- Parameterization of lightning (effects) in cloud-scale models
- Parameterization of the lightning activity of a convective cell by observed variables

Data

Lightning Imaging Sensor (LIS) - MSFC/NASA

- Space-borne on-board the TRMM satellite (35° inclination angle)
- Operational since 1997 (mission probably ends beginning 2005)
- Optical detection of total lightning (90% efficiency)
- ▶ 600 x600 km² field of view, ~90 s observation

Precipitation Radar (PR) - GSFC/NASA, JAXA

- Space-borne on-board the TRMM satellite
- > 13.8 GHz Radar, 247 km swath width, 5 km horizontal resolution
- Maximum reflectivity and cloud top height in this study

Bauru Radar - IPMet/UNESP

- 1 km resolution data for this study
- Cloud top height and reflectivity at 3.5 km altitude used in this study

Brazilian Lightning Detection Network, ELAT/INPE

Detection of cloud-to-ground flashes in southern and central Brazil

Parameters

Parameters investigated in this study:

Observations:

LIS lightning frequency	f _{LIS}
BLN lightning frequency	f _{BLN}
PR maximum reflectivity	Z _{max}
Bauru Radar reflectivity	
@ 3.5km altitude	Z _{3.5km}
PR/Bauru Radar cloud top height	CTH
PR/Bauru Radar cold cloud thickness	
(cloud depth above the freezing level)	ССТ

Working assumptions:

Total lightning frequency Intra-cloud (IC) lightning frequency Cloud-to-ground (CG) flash frequency

$$\begin{aligned} \mathbf{f}_{\text{total}} &= \mathbf{f}_{\text{LIS}} \\ \mathbf{f}_{\text{IC}} &= \mathbf{f}_{\text{LIS}} - \mathbf{f}_{\text{BLN}} \\ \mathbf{f}_{\text{CG}} &= \mathbf{f}_{\text{BLN}} \end{aligned}$$

Strategy - Example

For example:

- 3 March 2004
- São Paulo State

Strategy – 1. LIS Cells

 Identify active "lightning cells" based on LIS data for the TROCCINOX/TroCCiBras experimental area

Strategy – 2. Define Ellipse

- Identify active "lightning cells" based on LIS data for the TROCCINOX/TroCCiBras experimental area
- Define ellipse enclosing the lightning cell

Strategy – 3. BLN Flashes

- Identify active "lightning cells" based on LIS data for the TROCCINOX/TroCCiBras experimental area
- Define ellipse enclosing the lightning • cell
- Identify BLN CG flashes for the cell ulletduring the overpass

Strategy – 4. TRMM PR

- Identify active "lightning cells" based on LIS data for the TROCCINOX/TroCCiBras experimental area
- Define ellipse enclosing the lightning cell
- Identify BLN CG flashes for the cell during the overpass
- Identify the PR maximum reflectivity and cloud top height for the cell

Strategy – 5. Bauru Radar

- Identify active "lightning cells" based on LIS data for the TROCCINOX/TroCCiBras experimental area
- Define ellipse enclosing the lightning cell
- Identify BLN CG flashes for the cell during the overpass
- Identify the PR maximum reflectivity and cloud top height for the cell
- Search for the Bauru Radar reflectivity at 3.5 km and the cloud top height

Strategy – 6. Radiosondes

- Identify active "lightning cells" based on LIS data for the TROCCINOX/TroCCiBras experimental area
- Define ellipse enclosing the lightning cell
- Identify BLN CG flashes for the cell during the overpass
- Identify the PR maximum reflectivity and cloud top height for the cell
- Search for the Bauru Radar reflectivity at 3.5 km and the cloud top height
- Look for radiosonde sites

Summary of LIS orbits, cells, lightning and β

Ratio of IC to CG flashes: $\beta = N_{IC}/N_{CG} \stackrel{!}{=} (N_{LIS}-N_{BLN})/N_{BLN}$

Date	LIS Orbit	Number of LIS areas	Number of LIS flashes	Number of BLN flashes	β
24 January 2004	35301	15	32	5	5.40
26 February 2004	35814	2	9	6	0.50
27 February 2004	35830	35	234	19	11.32
28 February 2004	35835	36	174	30	4.80
28 February 2004	35845	2	9	0	∞
29 February 2004	35860	5	90	5	17.00
03 March 2004	35906	30	191	29	5.59
04 March 2004	35911	1	2	0	8
06 March 2004	35957	19	67	6	10.17
10 March 2004	36018	12	47	10	3.70
Total		157	855	110	6.77

LIS and BLN lightning frequency for cells

- ▶ Total lightning frequencies up to 27 min^{-1,} CG lightning up to 5.6 min⁻¹
- β can reach any value between 0 (CG only) and ∞ (IC only) for the complete dataset
- β seems more restricted for single overpass

LIS lightning frequency and radar reflectivity -All 10 overpasses

- Pronounced increase of total lightning activity with Z_{max} and Z_{3.5km}
 - at 45 dBZ for the TRMM PR
 - at 50 dBZ for the Bauru radar

CG lightning fraction and radar reflectivity -All 10 overpasses

- Fraction of CG lightning only significant above a threshold in Z_{max} and Z_{3.5km}
 - at 45 dBZ for the TRMM PR, well pronounced
 - at 40 dBZ for the Bauru radar, not very well defined

Lightning and radar reflectivity - 03 March 2004

• Similar results for the 03 March 2004 overpass compared to the complete dataset

LIS lightning frequency and cloud top height -All 10 overpasses

- Large scatter of the total lightning activity for both TRMM PR and Bauru Radar CTH
 - TRMM PR follows the analytical expression f_{PR} from Price and Rind, 1992
 - Bauru Radar data not conclusive (tendency towards f_{TF} from Fehr et al, 2004)

CG lightning fraction and cold cloud thickness -All 10 overpasses

- Cold Cloud Thickness (CCT): depth of cloud above the freezing level, here above 0°C-level from radiosondes)
- No significant correlation between the fraction of CG flashes and the CCT
 - TRMM PR tendency towards Price and Rind, 1993

Lightning and cloud height - 03 March 2004

- The total lightning activity shows a tendency to follow f_{tf} for the Bauru radar CTH
- No significant correlation for the CG lightning fraction can be derived for the 03 March 2004 overpass

Results

- Ratio β between IC and CG flashes has a broad distribution depending on convective state and meteorological situation ranging from only CG to only IC flashes
- Average β for the 10 overpasses during the campaign period: 6.77
- Average β for the 03 March 2004: 5.59
- **For individual overpasses** β can vary significantly
- Total lightning activity and the CG lightning fraction depends strongly on the maximum reflectivity
- Indications for a maximum reflectivity threshold above which a significant CG lightning fraction develops
- Analytical equations in the form of Price and Rind (1992) seem to describe the total lightning activity also on cloud scale
- No significant correlation between the Cold Cloud Thickness and the CG lightning fraction can be established

Discussion/To Do:

- Major restriction: short observation time of LIS
 - lightning frequencies below 0.7 s⁻¹ cannot be resolved
 - In particular problematic for low CG lightning activity
- Overlapping cells
- Storms that only produce CG lightning are not considered (although few)
- Time lag between TRMM and Bauru radar observations (up to 8 min)
- Only reflectivity at 3.5 km altitude considered for the Bauru radar
 - close to the anticipated maximum
 - smoothing of results
- TRMM PR and Bauru radar analyzed with different spatial resolution (5 vs. 1 km)
- Necessary to extend to years with higher lightning activity than the 2004 summer
- Classification according to the meteorological setting

