Comparison of TRMM LIS and PR with ground based lightning and radar observations for the TROCCINOX/TroCCiBras/HIBISCUS field campaign

Thorsten Fehr, IPA/DLR, Germany
Gerhard Held, IPMet/UNESP, Brazil
Osmar Pinto, ELAT/INPE, Brazil
Need for Lightning Information

Total Lightning:
- Operational ground based system optimized for cloud-to-ground lightning localization
- Important contribution of Nitrogen oxides (NO_x) by intra-cloud lightning
- For the extrapolation of the regional NO_x results an estimate of the total lightning activity is necessary

Parameterization of lightning:
- Extrapolation of storm-scale lightning results to a wider sample
- Parameterization of lightning (effects) in cloud-scale models
- Parameterization of the lightning activity of a convective cell by observed variables
Data

Lightning Imaging Sensor (LIS) - MSFC/NASA
- Space-borne on-board the TRMM satellite (35° inclination angle)
- Operational since 1997 (mission probably ends beginning 2005)
- Optical detection of total lightning (90% efficiency)
- 600 x600 km² field of view, ~90 s observation

Precipitation Radar (PR) - GSFC/NASA, JAXA
- Space-borne on-board the TRMM satellite
- 13.8 GHz Radar, 247 km swath width, 5 km horizontal resolution
- Maximum reflectivity and cloud top height in this study

Bauru Radar - IPMet/UNESP
- 1 km resolution data for this study
- Cloud top height and reflectivity at 3.5 km altitude used in this study

Brazilian Lightning Detection Network, ELAT/INPE
- Detection of cloud-to-ground flashes in southern and central Brazil
Parameters

Parameters investigated in this study:

Observations:
- LIS lightning frequency \(f_{\text{LIS}} \)
- BLN lightning frequency \(f_{\text{BLN}} \)
- PR maximum reflectivity \(Z_{\text{max}} \)
- Bauru Radar reflectivity @ 3.5km altitude \(Z_{3.5\text{km}} \)
- PR/Bauru Radar cloud top height \(\text{CTH} \)
- PR/Bauru Radar cold cloud thickness (cloud depth above the freezing level) \(\text{CCT} \)

Working assumptions:
- Total lightning frequency \(f_{\text{total}} = f_{\text{LIS}} \)
- Intra-cloud (IC) lightning frequency \(f_{\text{IC}} = f_{\text{LIS}} - f_{\text{BLN}} \)
- Cloud-to-ground (CG) flash frequency \(f_{\text{CG}} = f_{\text{BLN}} \)
Strategy - Example

For example:

• 3 March 2004
• São Paulo State
Strategy – 1. LIS Cells

- Identify active “lightning cells” based on LIS data for the TROCCINOX/TroCCiBras experimental area
Strategy – 2. Define Ellipse

- Identify active “lightning cells” based on LIS data for the TROCCINOX/TroCCiBras experimental area
- Define ellipse enclosing the lightning cell

\[f_{\text{total}} = f_{\text{total}}(f_{\text{CG}}, \text{CTH}, \text{CCT}, Z_{\text{max}}, Z_{3.5\text{km}}) \]
Strategy – 3. BLN Flashes

- Identify active “lightning cells” based on LIS data for the TROCCINOX/TroCCiBras experimental area
- Define ellipse enclosing the lightning cell
- Identify BLN CG flashes for the cell during the overpass
Strategy – 4. TRMM PR

- Identify active “lightning cells” based on LIS data for the TROCCINOX/TroCCiBras experimental area
- Define ellipse enclosing the lightning cell
- Identify BLN CG flashes for the cell during the overpass
- Identify the PR maximum reflectivity and cloud top height for the cell
Strategy – 5. Bauru Radar

- Identify active “lightning cells” based on LIS data for the TROCCINOX/TroCCiBras experimental area
- Define ellipse enclosing the lightning cell
- Identify BLN CG flashes for the cell during the overpass
- Identify the PR maximum reflectivity and cloud top height for the cell
- Search for the Bauru Radar reflectivity at 3.5 km and the cloud top height
Strategy – 6. Radiosondes

- Identify active “lightning cells” based on LIS data for the TROCCINOX/TroCCiBras experimental area
- Define ellipse enclosing the lightning cell
- Identify BLN CG flashes for the cell during the overpass
- Identify the PR maximum reflectivity and cloud top height for the cell
- Search for the Bauru Radar reflectivity at 3.5 km and the cloud top height
- Look for radiosonde sites

\[f_{\text{total}} = f_{\text{total}}(f_{\text{CG}}, \text{CTH}, \text{CCT}, Z_{\text{max}}, Z_{3.5\text{km}}) \]
Summary of LIS orbits, cells, lightning and β

Ratio of IC to CG flashes: $\beta = \frac{N_{IC}}{N_{CG}} = \frac{(N_{LIS} - N_{BLN})}{N_{BLN}}$

<table>
<thead>
<tr>
<th>Date</th>
<th>LIS Orbit</th>
<th>Number of LIS areas</th>
<th>Number of LIS flashes</th>
<th>Number of BLN flashes</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 January 2004</td>
<td>35301</td>
<td>15</td>
<td>32</td>
<td>5</td>
<td>5.40</td>
</tr>
<tr>
<td>26 February 2004</td>
<td>35814</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>0.50</td>
</tr>
<tr>
<td>27 February 2004</td>
<td>35830</td>
<td>35</td>
<td>234</td>
<td>19</td>
<td>11.32</td>
</tr>
<tr>
<td>28 February 2004</td>
<td>35835</td>
<td>36</td>
<td>174</td>
<td>30</td>
<td>4.80</td>
</tr>
<tr>
<td>28 February 2004</td>
<td>35845</td>
<td>2</td>
<td>9</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>29 February 2004</td>
<td>35860</td>
<td>5</td>
<td>90</td>
<td>5</td>
<td>17.00</td>
</tr>
<tr>
<td>03 March 2004</td>
<td>35906</td>
<td>30</td>
<td>191</td>
<td>29</td>
<td>5.59</td>
</tr>
<tr>
<td>04 March 2004</td>
<td>35911</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>06 March 2004</td>
<td>35957</td>
<td>19</td>
<td>67</td>
<td>6</td>
<td>10.17</td>
</tr>
<tr>
<td>10 March 2004</td>
<td>36018</td>
<td>12</td>
<td>47</td>
<td>10</td>
<td>3.70</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>157</td>
<td>855</td>
<td>110</td>
<td>6.77</td>
</tr>
</tbody>
</table>
LIS and BLN lightning frequency for cells

- Total lightning frequencies up to 27 min\(^{-1}\), CG lightning up to 5.6 min\(^{-1}\)
- \(\beta\) can reach any value between 0 (CG only) and \(\infty\) (IC only) for the complete dataset
- \(\beta\) seems more restricted for single overpass
LIS lightning frequency and radar reflectivity - All 10 overpasses

- Pronounced increase of total lightning activity with Z_{max} and $Z_{3.5\text{km}}$
 - at 45 dBZ for the TRMM PR
 - at 50 dBZ for the Bauru radar
CG lightning fraction and radar reflectivity - All 10 overpasses

- Fraction of CG lightning only significant above a threshold in Z_{max} and $Z_{3.5\text{km}}$
 - at 45 dBZ for the TRMM PR, well pronounced
 - at 40 dBZ for the Bauru radar, not very well defined
Lightning and radar reflectivity - 03 March 2004

Similar results for the 03 March 2004 overpass compared to the complete dataset
LIS lightning frequency and cloud top height - All 10 overpasses

- Large scatter of the total lightning activity for both TRMM PR and Bauru Radar CTH
 - TRMM PR follows the analytical expression f_{PR} from Price and Rind, 1992
 - Bauru Radar data not conclusive (tendency towards f_{TF} from Fehr et al, 2004)
CG lightning fraction and cold cloud thickness - All 10 overpasses

Cold Cloud Thickness (CCT):
depth of cloud above the freezing level, here above 0°C-level from radiosondes

No significant correlation between the fraction of CG flashes and the CCT
 • TRMM PR tendency towards Price and Rind, 1993
The total lightning activity shows a tendency to follow f_{tf} for the Bauru radar CTH.

No significant correlation for the CG lightning fraction can be derived for the 03 March 2004 overpass.
Results

- Ratio β between IC and CG flashes has a broad distribution depending on convective state and meteorological situation ranging from only CG to only IC flashes.
- Average β for the 10 overpasses during the campaign period: 6.77
- Average β for the 03 March 2004: 5.59
- For individual overpasses β can vary significantly.
- Total lightning activity and the CG lightning fraction depends strongly on the maximum reflectivity.
- Indications for a maximum reflectivity threshold above which a significant CG lightning fraction develops.
- Analytical equations in the form of Price and Rind (1992) seem to describe the total lightning activity also on cloud scale.
- No significant correlation between the Cold Cloud Thickness and the CG lightning fraction can be established.
Discussion/To Do:

- Major restriction: short observation time of LIS
 - lightning frequencies below 0.7 s\(^{-1}\) cannot be resolved
 - In particular problematic for low CG lightning activity
- Overlapping cells
- Storms that only produce CG lightning are not considered (although few)
- Time lag between TRMM and Bauru radar observations (up to 8 min)
- Only reflectivity at 3.5 km altitude considered for the Bauru radar
 - close to the anticipated maximum
 - smoothing of results
- TRMM PR and Bauru radar analyzed with different spatial resolution (5 vs. 1 km)
- Necessary to extend to years with higher lightning activity than the 2004 summer
- Classification according to the meteorological setting