# TROCCINOX - Tropical Convection, Cirrus, and Nitrogen Oxides Experiment, Overview

Ulrich Schumann Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center, DLR), Institute of Atmospheric Physics on behalf of the TROCCINOX team







Institut für

# **Acknowledgements**

TROCCINOX is partially funded by the <u>Commission of the</u> <u>European Community</u>.

TROCCINOX is performed together with several <u>European</u> research institutes (ETH, KNMI, MPI-C etc.) and together with the <u>Brazilian project TroCCiBras</u> co-ordinated by IPMET

Support by the Institituto de Pesquisas Meterologicas (IPMET) / Universidade Estadual Paulista (UNESP), and the company EMBRAER is gratefully acknowledged.





# **TROCCINOX - Questions**

- What is the impact of tropical deep convection on the balance and distribution of <u>NO<sub>x</sub></u> and other trace gases?
- How do troposphere-stratosphere exchange processes contribute to the amount of <u>water vapour</u> entering the stratosphere?
- What is the effect of tropical deep convection on the formation and distribution of *aerosol particles*?
- What are the origins of *cirrus clouds* in the tropics and how do cirrus clouds affect air composition?
- What is the role of the main transport processes in the tropical UT/LS in determining trace gas budgets?

The Jan-March 2004 IOP provided data to answer part of the questions, in particular the NOx aspect





How large is the source (LNO) of Nitrogen Oxides (NC from Lightning

Best estimate of LNOx source: 5 (2 - 20) Tg(N)/

of total of 30-50 Tg(N)/a

30 % of tropical O3 is due to LNO

The uncertainty in LNOx implies a 20% uncertainty in methane lifetime

Ozone and Methane are greenhouse gase

### **TROCCINOX – Schedule: July 2002 - June 2005**

| 2002/2003                                                                        | 2004                                                                                                                                                  | 2005<br>Second Field Experiment<br>January- March 2005<br>with Falcon <u>and</u><br>Geophysica and<br>Bandeirante from<br>Araçatuba |  |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Preparation,<br>Agreement of<br>Cooperation<br>between<br>DLR and<br>UNESP/IPMET | First Field Experiment<br>February-March 2004<br>from Gaviao Peixoto /<br>Bauru (Sao Paulo<br>State) with the DLR-<br>Falcon and INPE-<br>Bandeirante |                                                                                                                                     |  |  |
| TROCCIBRAS<br>A A A A A A A A A A A A A A A A A A A                              |                                                                                                                                                       |                                                                                                                                     |  |  |





# **DLR-Falcon** Instrumentation









# Flight paths during transit and locally







# Falcon Flights

| Date                 | Flight rational                                                                                                                                                                       |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3101                 | Transfer Oberpfaffenhofen - Seville                                                                                                                                                   |
| 0202                 | Seville - Sal - Fernando de Naronha, Recife                                                                                                                                           |
| 0402                 | Recife - Gaviao Peixoto                                                                                                                                                               |
| 1302                 | Cross-section 2: Air masses north and south of convergence zone (CZ)                                                                                                                  |
| 1402                 | Radar box: Probing of thunderclouds                                                                                                                                                   |
| 1602<br>1702<br>1902 | Radar box: Air masses unaffected by convection, Comparison with HIBISCUS SP1 balloon<br>Cross-section 4: Contrast of air masses affected / unaffected by previous tropical convection |
| 2002                 | N-E - triangle: Contrast of air masses affected / unaffected by tropical convection, coordinated with Bandeirante                                                                     |
| 2702<br>2802         | Stacked profile radar box: Comparison with HIBISCUS MIR-SAOZ balloon, and with Bandeirante                                                                                            |
| 2002                 | N W triangle: Probing of air masses affected by provious tropical convection                                                                                                          |
| 0303b                | Radar box: Probing of thunderclouds                                                                                                                                                   |
| 0403                 | N- E-triangle. Lagrangian-Experiment: 2 <sup>nd</sup> probing of air masses measured on 0303b                                                                                         |
| 0503                 | Profile in radar box: Air masses unaffected by convection                                                                                                                             |
| 0703                 | ENVISAT validation, Constant level and profile through MIPAS limb and SCIA limb/nadir measurements                                                                                    |
| 1003                 | Test flight before transfer to Germany and GLAS comparison                                                                                                                            |
| 1203                 | Gaviao Peixoto - Recife                                                                                                                                                               |
| 1403                 | Recife - Sal - Seville                                                                                                                                                                |
| 1503                 | Seville - Oberpfaffenhofen                                                                                                                                                            |

### Total of 23 Falcon flights, 45 days, 82 flight hours

Institut für

# **Some Results**

- Falcon data are evaluated and in the data bank
- Lighting NOx
- Water Vapour from Lidar
- Aerosols Loading
- Validation of Weather Predictions







Falcon - NO<sub>x</sub> - TROCCINOX 2004

Falcon - NO<sub>x</sub> - TROCCINOX 2004



#### Falcon - NO<sub>x</sub> - TROCCINOX 2004

Falcon - CO - TROCCINOX 2004

Falcon - CO - TROCCINOX 2004







Falcon - CO - TROCCINOX 2004

Falcon - CO - CONTRACE 2003

DIR



#### Falcon - O<sub>3</sub> - TROCCINOX 2004



DIR



Falcon - O<sub>3</sub> - TROCCINOX 2004



# **1. Method to estimate lightning-produced NO<sub>x</sub>**

 $P(NO_{X}) = [NO_{X}] F_{C} S C :$ 

global annual  $NO_X$  production rate (g(N) yr<sup>-1</sup>)

[NO<sub>x</sub>]: the average volume mixing ratio in the anvil produced by lightning (nmol/mol)

$$F_c = (V_a - V_s) \mathbf{r}_a \mathbf{D} \mathbf{x} \mathbf{D} \mathbf{z}$$
:

average rate at which air is advected out of the anvil (g(air) s<sup>-1</sup> anvil<sup>-1</sup>)

S: number of active cumulonimbus cells occurring at any instant globally (ca. 2000)
C: conversion factor (g(N) g(air)<sup>-1</sup> s yr<sup>-1</sup>)



[Chameides et al., JGR, 1987; Huntrieser et al., JGR, 2002]

Institut für

# Lightning NOx, Case studies for 3 Thunderstorms





MSG, Ch1, 2, 9: RGB Composite from channels at 0.6mm, 0.8 mm and 10.8 mm

L. Bugliaro





Feb 14

-70°C, 14.5 k

Feb 28 -50°C, 11.5 ki

March -80°C, 16 km





# 14 Febr

IPMET, Bau Radar 1523L Reflectivity

Lightning (IRAS) 150 1530LT

**Falcon path** (time LT)



### NOx in Thunderstorms, 14.02.04



Institut für



# **28 February**

200402281900a



L. Bugliaro





### NOx in Thunderstorms, 28.02.04







#### comparison EULINOX/IROCCINOX thunderstorms:

### 28 February 2004 case





Similar width (20-40 km) and height (1-2 nmol mol<sup>-1</sup>) of NO signatures in the anvil outflow







Institut für

# **Development of deep convection on 3 March**













### NOx in Thunderstorms, 03.03.04, Part 1







### NOx in Thunderstorms, 03.03.04, Part 2



Institut für



# Method to estimate lightning-produced NO<sub>x</sub>

 $P(NO_x) = [NO_x] F_c S C$ :

global annual NO<sub>x</sub> production rate (g(N) yr<sup>-1</sup>)

the average volume mixing ratio in the anvil produced [NO<sub>x</sub>]: by lightning (nmol/mol)

$$F_c = (V_a - V_s) \mathbf{r}_a \mathbf{D} \mathbf{x} \mathbf{D} \mathbf{z}$$
:

average rate at which air is advected out of the anvil (g(air) s<sup>-1</sup> anvil<sup>-1</sup>)

- number of active cumulonimbus cells occurring **S**: at any instant globally (ca. 2000) **C**:
  - conversion factor (g(N) g(air)<sup>-1</sup> s yr<sup>-1</sup>)



[Chameides et al., JGR, 1987; Huntrieser et al., JGR, 2002]

Institut für

# Parameters of Observed Convective Events during TROCCINOX and Comparison to European Cases

|                                  |         | TROCCINOX | LINOX/EULINOX |           |              |
|----------------------------------|---------|-----------|---------------|-----------|--------------|
| ase                              | 140204  | 280204    | 030304b       | medium    | large        |
| oud top, km                      | 14.5    | 11.5      | 16            |           |              |
| ight altitude, km                | 11-11.3 | 8.8-10.7  | 9.1-10        |           |              |
| O <sub>max</sub> , nmol/mol      | 3.2     | 2.4       | 45            | 2.6       | 3.8          |
| O <sub>xm</sub> , nmol/mol       | 0.5     | 1.3       | 1.9           | 1.3       | 2.2          |
| D <sub>x.inflow</sub> , nmol/mol | <0.1    | <0.2      | <0.2          | 0.5       | 0.5          |
| x, km                            | 40      | 25        | 30            | 30        | 45           |
| , km                             | 1       | 1.9       | 1             | 1         | 1            |
| -v <sub>s</sub> , m s⁻¹          | 7       | 11        | 12            | 8         | 13           |
| ;, 10 <sup>8</sup> kg s⁻¹        | 1.1     | 2.0       | 1.5           | 1.3       | 2.3          |
| NOx), Tg(N) yr⁻¹                 | 1.7*    | 7.8       | <b>8.6</b> *  | 3.1 (2-4) | 11.7 (10-13) |

\* Lower limit estimates, since only the lower part of the anvil outflow was investigated.

(LINOX/EULINOX from Huntrieser et al., 1998, 2002)





# 2. Method to estimate lightning-produced NO<sub>x</sub>

Fit <u>Source Strength</u> and <u>Profile</u> of LNOx source rate in global chemical transport models (with meteorological fields based on weather analysis, ECMWF) to optimally fit observed NOx mesurements (and other data) in regions where the NOx concentration is mainly due to LNOx.

See presentation Huntrieser et al., later today





# **Measurement and Modelling of Nitrogen Oxide NC**



# idar observation shows Cb-Anvil, e.g. 17 Febr. 2004



#### Outflow up to 15.5 km altitude: Geophysica or HALO required



(Ehret, Fix, Flentje, Wirth, et al., 2004)

# Vertical profiles of aerosol number concentrations



number concentrations (particle/cm<sup>3</sup> stp)

Statistics over all mission flights from GPX





# Vertical profiles: comparison with a mid-latitude summer time continental Europe campaign



number concentrations (particle/cm<sup>3</sup> stp)

Statistics over all mission flights from GPX & from the UFA/EXPORT campaign in 200









# **HIBISCUS-TROCCINOX** Comparisons

# 1<sub>2</sub>0:

- F2 on 13 Feb 2004 : no DIAL data
- F1 on 16 Feb 2004 :
- F3 on 26 Feb 2004 :
- reasonable agreement
- - **P D**x > 400 km
- F4 on 24 Feb 2004: no Falcon flight
- 12 h time-shift to Falcon start on 27 Feb







- - Dhualtalan Atmaan

+

# Comparison of H<sub>2</sub>O from DIAL, TDLAS (SF1) and Radiosonde, 16 February 2004

PRELIMINARY(!) H<sub>2</sub>O Comparison 16 Feb 2004



Institut für





Falcon - NO<sub>2</sub> - TROCCINOX 2004







Falcon - NO<sub>2</sub> - TROCCINOX 2004

Falcon - NO<sub>2</sub> - TROCCINOX 2004



- First systematic study of continental thunderstorms in the tropics, with subtropical and tropical thunderstorms
- Wide (several 10 km) spikes indicate outflow from a thunderstorm anvil, narrow (up to 65 nmol mol<sup>-1</sup>, order 200 m) indicate fresh lightning events.
- Three TROCCINOX case studies indicate lower bounds for global lightning-NO<sub>x</sub> production rates of 2 to 9 Tg(N) yr<sup>-1</sup>.
- Model Comparison for 7 TROCCINOX case studies suggest good agreement with ECHAM model for 3 to 7 Tg(N) yr<sup>-1</sup> (Preliminary)
- Important results from aerosols and H<sub>2</sub>O Lidar
- NOx maximum above 12.5 km. Geophysica needed
- Therefore TROCCINOX-2 from Araçatuba 26.1-24.2.05

# **Geophysica M55** Instrumentation





Institut für Dhusik den Atmoonkäns

