
Introduction to the
NCAR Command Language

Mattia Righi
DLR – Institut für Physik der Atmosphäre

May 2015– Based on NCL version 6.3.0

Folie 2
Introduction to NCL - Mattia Righi

Outline

1. NCL as a programming language (syntax,
variables, arrays, functions, file input/output
etc.)

2. NCL graphics (with examples)

3. Practical exercises

Folie 3
Introduction to NCL - Mattia Righi

Why NCL?
 Easy to learn: programming syntax similar to other high-level

languages (Fortran, C, IDL)

 Excellent on-line documentation (http://www.ncl.ucar.edu/),
including manuals, examples and mailing-lists to submit specific
problems

 Huge amount of built-in functions for statistics, advanced math and
geo-scientific data analysis

 Support for many data formats (including NetCDF, HDF, GRIB,
ASCII, binary…)

 Highly-flexible and intuitive routines for high-quality graphics

 Data analysis and data plotting in a single environment

 Free and open source

http://www.ncl.ucar.edu/

Folie 4
Introduction to NCL - Mattia Righi

Download and install NCL
 Download the latest version at http://www.earthsystemgrid.org/

 Select the latest version (6.3.0) and the precompiled binaries (!)
(much easier to install, works on most Linux distributions)

 To check the right binaries for your Linux system
http://www.ncl.ucar.edu/Download/linux.shtml

 Follow the instructions at
http://www.ncl.ucar.edu/Download/install.shtml

 It can also be installed on Windows (using the Cygwin emulator or
the VirtualBox) and on MAC
http://www.ncl.ucar.edu/Download/cygwin.shtml
http://www.ncl.ucar.edu/Download/macosx.shtml

http://www.earthsystemgrid.org/
http://www.ncl.ucar.edu/Download/linux.shtml
http://www.ncl.ucar.edu/Download/install.shtml
http://www.ncl.ucar.edu/Download/cygwin.shtml
http://www.ncl.ucar.edu/Download/macosx.shtml

Folie 5
Introduction to NCL - Mattia Righi

Getting started
Two possibilities:
 Interactive command line: every command is executed immediately as it is

typed (for quick operations):
 ncl

 Batch command: write a script using a text editor (e.g., emacs) and
execute it:

 ncl myscript.ncl

 Arguments can be passed upon call
 ncl x=5 myscript.ncl

Organize your script. Usually three things are needed:
 Read data: variables, coordinates, attributes
 Process data: regridding, average, unit conversions etc.
 Plot data: choose plot type, set plot options, draw the plot

Folie 6
Introduction to NCL - Mattia Righi

The NetCDF format
 NetCDF (Network Common Data Form) is a machine-independent data

format that supports the creation of array-oriented scientific data

 A key feature of the NetCDF (.nc) format is metadata: attributes,
named dimensions, coordinate arrays associated with the data

 A special attribute is _FillValue, indicating a variable‘s missing
value

 To see all the metadata from a NetCDF file, type:

ncdump –h filename.nc
ncl_filedump filename.nc

 To open a NetCDF file (graphic visualization), type:

ncview filename.nc

 NCL variables are based on the NetCDF data structure!

needs NetCDF lib installed

external software tool

Folie 7
Introduction to NCL - Mattia Righi

NetCDF/NCL variable model
 Reading a variable (varname) from a NetCDF file (filename.nc) is very easy:

 f = addfile("filename.nc","r")
 x = f->varname
 printVarSummary(x)

 NCL reads values, attributes and coordinates as a single object

x

values

attributes
(accessed via @)

coordinates
(accessed via &)

scalar

or

array

_FillValue

long_name

units

molarmass

version

time

lev

lat

lon

"r" for reading

Folie 8
Introduction to NCL - Mattia Righi

Variable types
Type Category Size Min Max _FillValue Suffix

integer numeric 32 bits -2147483648 +2147483647 -2147483647 i

float numeric 32 bits +/-1.17549e-38 +/-1.70141e+38 9.96921e+36 -

double numeric 64 bits +/-2.2250e-308 +/-8.9884e+307 9.96921e+36 D or d

short numeric 16 bits -32768 32767 -32767 h

logical - - False True _Missing -

string - - - - "missing" -

graphic - - - - -1 -

file - - - - -1 -

Other types are available (long, ulong, uint, ushort, byte, character, etc.)

Arithmetic overflow/underflow are not always reported as error to the user.
The effect of such errors is unpredictable!

Folie 9
Introduction to NCL - Mattia Righi

Basic arithmetic operators
Arithmetic operators in order of precedence:

- Negative Highest precedence! x = -3^2 = (-3)^2 = 9

^ Exponent Imaginary numbers not supported yet!

* Multiply No restrictions

/ Divide If both operands are integer, decimal truncated

% Modulus Integer remainder of integer division

Matrix multiplication Dot product of 1-D or 2-D arrays

+ Plus Also concatenates strings

- Minus No restrictions

Folie 10
Introduction to NCL - Mattia Righi

Variable assignment: scalar
 If variables are mixed, the "highest" type is used:

 i = 5/2 = 2 integer
 x = 5/2. = 2.5 float

 Once defined, a variable cannot be changed to higher type:

 x = 1.5 float
 x = 1520 ok, still a float
 x = 1.5d2 error (Assignment type mismatch)

 Iin this case use delete:

 delete(x)
 x=1.5d2

 or the reassignment operator (no need to delete):

 x:=1.5d2

 There are many type-conversion functions available
(http://www.ncl.ucar.edu/Document/Functions/type_convert.shtml):

 fx = tofloat(x) = 1.5
 ix = toint(x) = 1

http://www.ncl.ucar.edu/Document/Functions/type_convert.shtml

Folie 11
Introduction to NCL - Mattia Righi

Variable assignment: array
 Arrays in NCL are row-major (rightmost dimension varies fastest), like C and IDL
 Arrays can be defined using (/…/):
 y = (/-5., -2., 3./) float (3 elements)
 months = (/"Jan","Feb","Mar","Apr"/) string (4 elements)
 z = (/(/1.5d,2.0/),(/3.,5./),(/9,2/)/) double (3×2 elements)

 Or using the new statement:
 y = new(dimension, type)
 y = new(5, integer)
 y = new((/3, 4, 1/), float)

 _FillValue is assigned by default but can be changed (or not assigned):
 y = new((/3,4,1/), float, 1.e20)
 y = new((/3,4,1/), float, "No_FillValue") not recommended

 The function dimsizes gives the size of each dimension (from left to right):
print(dimsizes(y)) should give 3, 4, 1

 Use printVarSummary to check:
 printVarSummary(y)

Folie 12
Introduction to NCL - Mattia Righi

Missing values
 Missing values are defined in NetCDF/NCL using the special attribute

_FillValue

 Most NCL built-in functions recognizes and ignores missing values

 For example, the dim_avg function computes the average of all elements in
an array:

x = (/1., 5., 8., -999., 10./)
print(dim_avg(x)) this will give -195
x@_FillValue = -999. now -999. denotes a missing value
print(dim_avg(x)) this gives 6: missing value is ignored!

 Better not to use zero as a missing value

 Use printVarSummary to check if a variable has a defined _FillValue

 Like any other attribute, _FillValue can be accessed using @

 There are many functions to deal with missing values. See:
http://www.ncl.ucar.edu/Document/Functions/metadata.shtml

http://www.ncl.ucar.edu/Document/Functions/metadata.shtml

Folie 13
Introduction to NCL - Mattia Righi

Metadata assignment: attributes @
 Attributes are accessed using @:

 T = new((/4,8,3/), float)
 T@_FillValue = -999.
 T@units = "K"
 T@long_name = "Temperature"
 T@model = "EMAC"

 Test for an attribute:

isatt(T,"units")

 Retrieve all attributes from an NCL variable:

 T_atts = getvaratts(T)

 Retrieve all attributes from an NCL variable on a file:

 f = addfile("filename.nc","r")
 T_atts = getfilevaratts(f,"T")

 Delete an attribute:

delete(T@model)

Folie 14
Introduction to NCL - Mattia Righi

Metadata assignment: named dims !
 Dimesions of a variable can be named using !:

 T = new((/4,8,3/), float)
 T!0 = "time"
 T!1 = "lat"
 T!2 = "lon"

 Checking for dimension names:

isdimnamed(T,0) left-most dimension
isdimnamed(T,(/1,2/)) two right-most dimensions

 Retrieve all dimensions from an NCL variable:

 T_dims = getvardims(T)

 Retrieve all dimensions from an NCL variable on a file:

 f = addfile("filename.nc","r")
 T_dims = getfilevardims(f,"T")

 Delete a named dimension:

T!1=""

Folie 15
Introduction to NCL - Mattia Righi

Metadata assignment: coordinates &
 Coordinate arrays are 1-D arrays representing the values for a given (named!)

dimension

 Coordinates can be assigned using &:

 T = new((/4,8,3/), float)
 T!0 = "time"
 T!1 = "lat"
 T!2 = "lon"
 T&time = (/0., 6., 12., 18./)
 T&lat = fspan(-90.,90.,8) fspan creates a uniformly spaced array
 T&lon = fspan(-180,180,3)

 Attributes can be assigned to coordinate arrays too:

T&time@units = "hours"
T&lat@units = "degrees North"
T&lon@units = "degrees East"

 More functions to deal with attributes, dimensions and coordinates:
http://www.ncl.ucar.edu/Document/Functions/metadata.shtml

http://www.ncl.ucar.edu/Document/Functions/metadata.shtml

Folie 16
Introduction to NCL - Mattia Righi

String reference $
 Reference to an attribute, coordinate or named dimension can be obtained also

using a string variable, by enclosing it in $...$:

 str = "units"
 T@str = "temperature"

 str = "time"
 print(T&str)

 When reading a variable from a file, variable name can be replaced by a string
variable:

 str = "T"
 f = addfile("filename.nc","r")

 x = f->str

 It cannot be used by itself:

 str = x error

Folie 17
Introduction to NCL - Mattia Righi

Operations on arrays
 Like Fortran 90 and C: for arrays of the same sizes, arithmetics can be performed

without looping:

 ; x1 is (time,lev,lat,lon)
 ; x2 is (time,lev,lat,lon)
 x3 = 12. * x1
 x3 = x1 * x2
 x3 = 5. set all elements to 5.

 Very useful conform function, to promote an array and perform computations:

 ; x1 is (time,lev,lat,lon)
 ; x2 is (time,lat,lon)
 x3 = x1 * x2 error (Number of dimensions do not match)
 x2_prom = conform(x1, x2, (/0,2,3/))
 x3 = x1 * x2_prom

 Metadata are not copied during operations:

 x3 = x1 * x2 metadata are not copied
 x3 = x1 copy metadata first
 x3 = x1 * x2

Folie 18
Introduction to NCL - Mattia Righi

Operations on arrays
 Array reshaping, ndtooned and onedtond functions:

 T = (/ (/4.,5.,3./), (/9.,10.,11./), (/0.,7.,8./) /)
 T1D = ndtooned(T) convert to 1D array

 T = (/1.,2.,3.,4.,5.,6./)
 T2D = onedtond(T, (/2,3/) convert to 2×3 array

 Array reordering (named dimensions required, very expensive operation!):

 ; x1 is (time,lev,lat,lon)
 x2 = x1(lat|:,lon|:,time|:,lev|:)

 Dimension reversing:

 ; x1 is (time,lev,lat,lon)
 x1 = x1(::-1,:,:,:) reverse time dimension (and coordinate too!)

 Other functions for array creation, manipulation and query. See:
http://www.ncl.ucar.edu/Document/Functions/array_create.shtml
http://www.ncl.ucar.edu/Document/Functions/array_manip.shtml
http://www.ncl.ucar.edu/Document/Functions/array_query.shtml

http://www.ncl.ucar.edu/Document/Functions/array_create.shtml
http://www.ncl.ucar.edu/Document/Functions/array_manip.shtml
http://www.ncl.ucar.edu/Document/Functions/array_query.shtml

Folie 19
Introduction to NCL - Mattia Righi

Special array functions
 where: replace array values given a condition:

 x = where(condition, value if condition True, value if condition False)

 x = (/ -5., 1., 3., -7., 0., 11., -999./)
 x@_FillValue = -999.
 y = where(x.lt.0., 0., x) replace negative values with zero
 y = where(ismissing(x),0.,x) replace missing values with zero
 y = where(x.eq.0.,x@_FillValue,x) replace zero with missing value

 num: number of elements for which the condition is true:

 nn = num(x.lt.0.) should give 2

 any: gives True if any of the elements satisfies the condition:

 ll = any(ismissing(x)) should be True
 ll = any(x.eq.50.) should be False

 ind: return the index (indexes) for which the condition is True (1D arrays):

 nn = ind(x.lt.0.) should give 0 and 3
 nn = ind(ismissing(x)) should give 6

Folie 20
Introduction to NCL - Mattia Righi

Operations and missing values

 If more than one term in an expression contains a missing value and the
values are not equal, the missing value of the value of the left-most term
in the expression containing a missing value is used in the output:

 x1 = (/1, 2, -99/) x1@_FillValue = -99
 x2 = (/3, -999, 5/) x2@_FillValue = -999
 x3 = (/-9999, 7, 8/) x3@_FillValue = -9999

 out1 = x1 * x2 * x3 out1@_FillValue = -99
 out2 = x2 * x1 * x3 out2@_FillValue = -999
 out3 = x3 * x1 out3@_FillValue = -9999

 Use the function ismissing to check for missing values of a given
variable

 Use the function assignFillValue to transfer the attribute
_FillValue from one variable to another

Folie 21
Introduction to NCL - Mattia Righi

Array subscripting
 Subscripting is used to access specific elements of an array

 In NCL there are 3 types of subscripting:

 index (like Fortran, C, IDL…): uses : and :: and the index value
 coordinate: uses { and } and the coordinate value
 named dimensions: uses | and reordering

 Subscripting types can be mixed in the same array

 Index subscripting is 0-based (like C, IDL and python; while Fortran is
1-based). For example:

 x = (/5., 7., 9., 12., 25./)
 x(0) = 5.
 x(4) = 25.
 x(5) error (Subscript out of range)

 Be aware of dimension reduction when subscripting

Folie 22
Introduction to NCL - Mattia Righi

Index subscripting, : and ::
 Consider an array x(time,lat,lon):

 y = x(:,:,:) copy entire array
 y = x equivalent to above (indexes not required)
 y = (/x/) copy entire array (without metadata!)

 1st time, all lat, first 51 lon:

y = x(0,:,:50) dimensions = (nlat, 51)
y = x(0,:,0:50) equivalent to above

 1st time, all lat, every 2nd lon:

 y = x(0,:,::2) dimensions = (nlat, nlon/2)

 Like above, but preventing dimension reduction:

y = x(0:0,:,::2) dimensions = (1, nlat, nlon/2)

 Vectors of indexes can also be used. 1st, 2nd, 4th, 7th time:

 y = x((/0,1,3,6/),:,:) dimensions = (4, nlat, nlon)

Folie 23
Introduction to NCL - Mattia Righi

Coordinate subscripting, { and }
 Coordinate subscripting works only with monothonically increasing or

monothonically decreasing coordinate arrays

 If only one value is specified, the nearest coordinate is selected:

 y = x(:,{20},:) lat nearest to 20°N
 y = x(:,:,{-80}) lon nearest to 80°W

 If a range is given, only values inside such range are considered:

y = x(:,{5:15},:) every lat from 5°N to 15°N
y = x(:,:,{10:50:3}) every 3rd lon from 10°E to 50°E

 Be very careful with the longitude coordinate, since it could be given as
[0,360] or as [-180,180]. Common mistake:

 y = x(:,:,{-20:30}) if lon is [0,360] this is wrong!

 Subscripting types can be mixed:

 y = x(0:5,{45},{20:30})

Folie 24
Introduction to NCL - Mattia Righi

Named dimensions, |
 Only use for dimensions reordering

 Dimension names must be used for every subscript

 Reorder x(time,lat,lon):

 y = x(lat|:,lon|:,time|:)

 Can be mixed with other subscripting:

y = x(lat|0,lon|::5,time|:10) first lat, every 5th lon, first 11
 time elements
y = x(time|:,{lon|2:9},lat|:) all time, lon in the range
 [2,9], all lat

 Remember that reordering is a computationally expensive operation!

 The structure of climate data (like model output) is typically
(time,lev,lat,lon): do not change it inside the script, unless absolutely
necessary

Folie 25
Introduction to NCL - Mattia Righi

Lists
 Lists can be defined using [/…/]

 Lists can contain a heterogeneous set of variables, with different types and
sizes:

 A = 12. float
 B = "Hello" string
 C = (/-31, 2, 14, 6/) integer array
 mylist = [/A, B, C/] list

 List can also be initialized with the function NewList and new elements can
be added using ListPush

 mylist = NewList("fifo") fifo=first-in, first-out / lifo=last-in, first-out
 ListPush(mylist, A)
 ListPush(mylist, B)

 Additional functions are available to handle list ListPush, ListPop,
ListCount, ListIndex, ListGetType, ListSetType.

Folie 26
Introduction to NCL - Mattia Righi

NCL syntax summary
; comment

@ reference/create attributes

! reference/create named dimensions

& reference/create coordinate variables

:= reassignment operator

: array index subscripting

{…} array coordinate subscripting

| array named dimensions

$...$ string reference (to reference metadata or variable from file)

(/…/) array construct character

[/…/] list construct character

\ continuation character (statement to span multiple lines)

-> import/export variable via the addfile function

:: syntax for external shared objects (Fortran/C)

~ function code http://www.ncl.ucar.edu/Document/Graphics/function_code.shtml

http://www.ncl.ucar.edu/Document/Graphics/function_code.shtml

Folie 27
Introduction to NCL - Mattia Righi

NCL statements
 if, similar to Fortran, but no else if statement:

 if (condition) then
 do something
 else
 do somehing else
 end if

 do, use continue to proceed to the next iteration and break to exit loop:

 do ii=0,10
 do something
 end do

 do while:

ii=0
ll = False
do while (.not.ll)
 do something / set ll=True
 ii = ii+1
end do

Folie 28
Introduction to NCL - Mattia Righi

Logical operators
.eq. equal

.ne. not-equal

.lt. less-than

.le. less-than-or-equal

.gt. greater-than

.ge. greater-than-or-equal

.and. True if both operands are True

.or. True if either operand is True

.xor. True if one of the operands is True and the other is False

.not. True if the operand is False and vice versa

Left Oper Right Result

False .and. Any False

True .and. False False

True .and. True True

True .and. Missing Missing

Missing .and. Any Missing

True .or. Any True

False .or. True True

False .or. False False

False .or. Missing Missing

Missing .or. Missing Missing

Beware of missing values
in logical expressions!

Folie 29
Introduction to NCL - Mattia Righi

File input and output
NetCDF

Read:

f = addfile("file.nc","r") r for read
x = f->varname varname is a string

Write:

f = addfile("file.nc","c") c for create (new file)
f = addfile("file.nc","w") w for write (existing file)
f->varname = x varname is a string

ASCII
Read:

x = asciiread(file,dimension,type)
x = asciiread("file.dat",(/10,5/),float)

Write:

asciiwrite(file,variable)
asciiwrite("file.dat",x)

More functions for input/output: http://www.ncl.ucar.edu/Document/Functions/io.shtml

STDOUT
Print variable‘s values:
print(x)

Print variable‘s information:
printVarSummary(x)

For 2D arrays:
write_matrix(x)

OTHER FORMATS
GRIB1
GRIB2
HDF4
HDF-EOS2
CCM
OPeNDAP
Binary

See the link below…

http://www.ncl.ucar.edu/Document/Functions/io.shtml

Folie 30
Introduction to NCL - Mattia Righi

Functions and procedures
 Three kinds of functions/procedures:

 Built-in
 User-generated
 C and Fortran

 When using a function, the return value must be referenced:

 x = (/12.2, 21.5, 0.5, -4.1, 8.2, 5.4/)
 max(x) error (return value must be referenced)
 y = max(x) ok (assign to y)
 print(max(x)) ok (print on screen)

 Arguments of functions/procedures are passed-by-reference: changes to a variable‘s
value/metadata within the function/procedure are propagated back to the main code!

 Most of built-in functions ignore missing values

 Most of built-in functions do not retain metadata (unless _Wrap version is used)

 Useful system and systemfunc to execute shell commands within the script:

system("ls *.nc")

Folie 31
Introduction to NCL - Mattia Righi

Built-in functions/procedures
http://www.ncl.ucar.edu/Document/Functions/

 General routines (variables, arrays, strings, type conversion, system…)

 Math and statistics (basic, distribution functions, spherical harmonics,
random number generators…)

 Earth science (climatology, meteorology, oceanography, latitude/longitude,
regridding, time/date…)

 Input and output (NetCDF, ascii, binary…)

 Graphics (plot types, colors…)

Remember!
 function requires a return value (e.g., dim_avg , ispan)

procedure no return value (e.g., printVarSummary, delete)

Arguments are always passed-by-reference

http://www.ncl.ucar.edu/Document/Functions/io.shtml

Folie 32
Introduction to NCL - Mattia Righi

User-defined functions/procedures
 Two possibilities:

Paste the function code at the beginning of the script
Save the function code in an external .ncl file and load it
 load "./myfunc.ncl"

 How to create your own function:

undef("myfunc")
function myfunc(arg1,arg2,...,argn)
begin
 ...
 return(value)
end

 For procedures a return value is not required

 Optionally specify the expected argument type and/or size:

function myfunc(arg1:numeric,arg2[*]:integer)
procedure myproc(arg1[*][*]:string,arg2:logical)

Folie 33
Introduction to NCL - Mattia Righi

Importing Fortran/C functions
 Write the Fortran code in mycode.f, including the special wrapper text:

 C NCLFORTSTART
 subroutine mysub (arg1,arg2,arg3)
 real arg1,arg2,arg3
 C NCLEND
 ...
 return
 end

 Compile using WRAPIT:

 WRAPIT mycode.f will create an object mycode.so

 Add the shared object at the beginning of the NCL script:

 external EX01 "./mycode.so"

 Call the function inside the NCL script:

 EX01::mysub(x1,x2,x3)

http://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/NclExtend.shtml

A similar method
can also be applied
to Fortran 90 and C

codes.

http://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/NclExtend.shtml

NCL graphics

Folie 35
Introduction to NCL - Mattia Righi

4. Choose a plot type and draw the plot with the corresponding plot function

Sample graphic script

f = addfile("filename.nc","r")
x = f->varname
x_avg = dim_avg_n(x,0)

wks = gsn_open_wks("ps","plotfile")
gsn_define_colormap(wks,"rainbow")

res = True
res@cnLevelSelectionMode = "Explicit"
res@cnLevels = fspan(0.,100.,11)
...

plot = gsn_csm_contour_map_ce(wks,x_avg,res)

1. Read (and process) data to be plotted

2. Open a workstation (ps, pdf or screen) and define an associated color table

3. Set the plot resources (plot options, like tickmarks, levels, title, labels etc.)

Folie 36
Introduction to NCL - Mattia Righi

Plot types
gsn generic interfaces

(functions or procedures to create
basic plots)

gsn_xy
gsn_y
gsn_contour
gsn_contour_map
gsn_vector
gsn_vector_scalar
gsn_vector_map
gsn_vector_scalar_map
gsn_streamline
gsn_streamline_map
gsn_map

gsn_csm interfaces
(functions or procedures to create high-level

plots)

gsn_csm_contour
gsn_csm_streamline
gsn_csm_vector
gsn_csm_pres_hgt
gsn_csm_lat_time
gsn_csm_xy

 Much more powerful
 Automatically recognize _FillValue
 Use variable attributes for plot titles, labels…
 Use variable coordinates for the axes

No need to write a plotting script from scratch!
Start from an existing script: choose a plot example from the NCL website, get

the script and modify it.
http://www.ncl.ucar.edu/gallery.shtml

http://www.ncl.ucar.edu/Applications/list_ptypes.shtml

http://www.ncl.ucar.edu/gallery.shtml
http://www.ncl.ucar.edu/Applications/list_ptypes.shtml

Folie 37
Introduction to NCL - Mattia Righi

Workstation
 Before drawing any plot you need to open a workstation: this can be either a file (like

.eps) or the screen (x11)

 There are 6 types of workstation: ps, eps, epsi, png, pdf, ncgm, x11

 Specific resources can be associated to the workstation (but default is usually ok):

 type = "ps"
 type@wkOrientation = "landscape"
 type@wkPaperSize = "A4"
 wks = (type,"plotfile")

 An important element to be associated to a workstation is the colormap (see
http://www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml)

 gsn_define_colormap(wks,"rainbow")

 If no color map is loaded, the defaul one will be used (256 colors)

http://www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml

Folie 38
Introduction to NCL - Mattia Righi

Resources
 Resources are the heart of a graphic NCL script
 They allow to customize the default NCL plots
 They can be strings, float, integers, logical… depending on the type
 More than 1400 available!
 Grouped by type: cn (contour), gs (graphic styles) lb (labelbar), lg (legend), ti

(title), tm (tickmarks), xy (xy plots) etc.
 Written as the type (2 or 3 letters) and a full name describing it: xyLineColor,

cnFillColor, tiMainString, cnLevels
 To set a resource: define a logical variable (whatever name, usually res) and

attach the resource as an attribute (with @):

 res = True define a logical variable
 res@tiMainString = "My plot" set the plot title
 res@cnFillOn = True fill contours with color
 res@xyLineColor = "Yellow" use a yellow line
 res@tiMainAngleF = 45 tilt the plot title of 45°

See: http://www.ncl.ucar.edu/Document/Graphics/Resources/list_alpha_res.shtml

http://www.ncl.ucar.edu/Document/Graphics/Resources/list_alpha_res.shtml

Folie 39
Introduction to NCL - Mattia Righi

Draw the plot
plot = plot_function(workstation,data,resources)

plot = gsn_csm_xy(wks,data_x,data_y,res)

plot = gsn_csm_contour_map_ce(wks,data,res)

plot = gsn_csm_pres_hgt(wks,data,res)

http://www.ncl.ucar.edu/gallery.shtml
http://www.ncl.ucar.edu/Applications/list_ptypes.shtml

http://www.ncl.ucar.edu/gallery.shtml
http://www.ncl.ucar.edu/Applications/list_ptypes.shtml

Folie 40
Introduction to NCL - Mattia Righi

Example 1: xy plot

We load the 4-D variable CO from the sample file, compute the time average and plot its value as a
function of the vertical level (mlev) at a specified location (lat, lon):

 begin
 f = addfile("NetCDF_sample.nc","r")
 x = f->CO
 printVarSummary(x)

The dimensions of x are (time,mlev,lat,lon), this is the CO mixing ratio and the units are mol/mol. We
can proceed and compute the time average. We use the dim_avg_n function, which computes the
average over a specified dimension. Since we need the time average, this would be dimension 0
(dimensions are ordered left to right: in this case time is 0, mlev is 1, lat is 2, lon is 3):

 x_timavg = dim_avg_n(x,0)
 printVarSummary(x_timavg)

Now we have a 3-D variable (mlev, lat, lon), the time dimension is gone since we averaged over it. But
all metadata information disappeared! Use the _Wrap version of the function to retain metadata:

 x_timavg = dim_avg_n_Wrap(x,0)
 printVarSummary(x_timavg)

Folie 41
Introduction to NCL - Mattia Righi

Example 1: xy plot
Now we have the time-averaged variable with all metadata. We can get rid of x (this is optional, but is
a good practice when dealing with large scripts and lots of variables, to save memory):

 delete(x)

Next, we need to extract a specific location, for example 30°N and 55°W. We use coordinate
subscripting for selecting this position:

 x_sel = x_timavg(:,{30.},{-55.})

This will give an error message! Check again the longitude coordinate:

 printVarSummary(x_timavg)
 lon: [0..357.1875]

The range of longitude is [0,360], we have to convert 55°W to a [0,360] range:

 x_sel = x_timavg(:,{30},{305.})
 printVarSummary(x_sel)
 delete(x_timavg)

Now we have a 1-D variable containing CO mixing ratios as a function of the mlev coordinate. Convert
it from mol/mol to ppb:

 x_sel = x_sel * 1.e9

It‘s a good idea (not mandatory) to change the "units" attribute to keep track of this conversion:

 x_sel@units = "ppbv"

Folie 42
Introduction to NCL - Mattia Righi

Example 1: xy plot
We can now draw the plot: open a workstation, set some resources and choose the appropriate plot
function:

 wks = gsn_open_wks("eps","example1")
 res = True
 res@xyLineColor = "red"
 res@xyLineThicknessF = 3
 plot = gsn_csm_xy(wks,x_sel&mlev,x_sel,res)

Axes titles from
variable attributes

min/max values for
the axes

automatically set

We can change these
settings acting on the

corresponding resources

Folie 43

Example 1: xy plot
You can change the X- and Y-axis titles, for example including the units. These kind of resources are of
the type "title" (ti) (http://www.ncl.ucar.edu/Document/Graphics/Resources/ti.shtml):

 res@tiXAxisString = "Level"
 res@tiYAxisString = "CO mixing ratio [ppb]"

We can also set the Y-axis title using the variable attributes. Use + to concatenate the strings:

 res@tiYAxisString = x_sel@longname + " [" + x_sel@units + "]„

To add a title to the plot:

 res@tiMainString = "Example 1"

You can also change the min/max of the axes, this is a "transformation" resource (tr)
(http://www.ncl.ucar.edu/Document/Graphics/Resources/tr.shtml):

 res@trXMinF = 1.
 res@trXMaxF = 19.

You can explicitly set the tickmark values, using the "tickmark" resources (tm):

 res@tmXBMode = "Explicit" use user-defined tickmarks
 res@tmXBValues = (/1,5,10,15,19/) position of major tickmarks
 res@tmXBMinorValues = ispan(1,19,1) position of minor tickmarks
 res@tmXBLabels = (/"1","5","10","15","19"/) labels for the tickmarks

http://www.ncl.ucar.edu/Document/Graphics/Resources/ti.shtml
http://www.ncl.ucar.edu/Document/Graphics/Resources/tr.shtml

Folie 44

Example 1: xy plot

Folie 45
Introduction to NCL - Mattia Righi

Example 2: contour plot
We load the 4-D variable O3 from the sample file, compute the time average and make a contour
plot of the surface level (levels are ordered top-to-bottom in this file):
 begin
 f = addfile("NetCDF_sample.nc","r")
 x = f->O3
 x_timavg = dim_avg_n_Wrap(x,0)

Since levels are ordered top-to-bottom, the surface level corresponds to the last element of the
mlev coordinate. This can be found using the dimsizes function, remembering that arrays are 0-
based:

 x_sel = x_timavg(dimsizes(x_timavg&mlev)-1,:,:)

These commands can also be written in a single statement:

 x_sel = dim_avg_n_Wrap(x(:,dimsizes(x&mlev)-1,:,:),0)

Unit conversion:

 x_sel = x_sel * 1.e9
 x_sel@units = "ppbv"

Folie 46
Introduction to NCL - Mattia Righi

Example 2: contour plot
We have now a 2-D (lat,lon) variable, we can draw a contour plot over a map. There are many
possibilities, depending on the map projection: cylindrical equidistant (_ce), polar (_polar),
Lambert, satellite, etc. (http://www.ncl.ucar.edu/Applications/proj.shtml). Let‘s try with the
cylindrical equidistant:
 wks = gsn_open_wks("eps","example2")
 res = True
 plot = gsn_csm_contour_map_ce(wks,x_sel,res)

Read from
@long_name

Read from
@units

Automatically
set

http://www.ncl.ucar.edu/Applications/proj.shtml

Folie 47

Example 2: contour plot
We can change contour levels acting on the "contour" resources (cn).
 res@cnLevelSelectionMode = "ManualLevels"
 res@cnMinLevelValF = 0.
 res@cnMaxLevelValF = 50.
 res@cnLevelSpacingF = 2.

We can also use colors, we need to load a colormap and turn on contour fill:

 gsn_define_colormap(wks,"rainbow")
 res@cnFillOn = True turn on contour fill

Still too
crowded!

Turn off

contour lines

Folie 48

Example 2: contour plot
Turn of contour lines:
 res@cnLinesOn = False

Folie 49
Introduction to NCL - Mattia Righi

Paneling
To panel multiple plots (say 3) in a single image, first create a graphic array of dimension 3:
 plot = new(3, graphic)

When setting resources, remember to include the following:

 res@gsnDraw = False
 res@gsnFrame = False

This is because the high-level graphic interfaces (like plot_gsn_xy) automtically create and
draw graphical objects and advance the frame (i.e. "turn the page"). When paneling, this
behaviour must be turned off: different plots are saved in an array of graphical objects and
drawn all together with the paneling function.

Returning to previous example, suppose we want to plot O3 mixing ratio at the three lowermost
levels and panel the three plots:

 nlev = dimsizes(x_sel&mlev)
 plot(0) = gsn_csm_contour_map_ce(wks,x_sel(nlev-1,:,:),res)
 plot(1) = gsn_csm_contour_map_ce(wks,x_sel(nlev-2,:,:),res)
 plot(2) = gsn_csm_contour_map_ce(wks,x_sel(nlev-3,:,:),res)

The 3 plots are stored in the graphic array plot, but they have not been drawn yet!

Folie 50
Introduction to NCL - Mattia Righi

Paneling
Now we can call the panling procedure. This is equivalent to any other graphical interface and
can have ist own specific resources:
 resPan = True
 resPan@txString = "Example of a panel" set the title
 resPan@txFontHeightF = 0.012 set the title font size
 resPan@txFont = 22 set the title font type
 gsn_panel(wks,plot,(/1,3/),resPan)

By setting (/1,3/) the 3 plots are drawn in 1 row and 3 column.

There are many font types to choose from
(http://www.ncl.ucar.edu/Document/Graphics/font_tables.shtml)

http://www.ncl.ucar.edu/Document/Graphics/font_tables.shtml

Folie 51
Introduction to NCL - Mattia Righi

Adding text, lines and markers

Remember to set res@gsnDraw and res@gsnFrame to False when adding these objects!
Resources must be associated to a different graphic variable than the one used for the plot.

Two methods to add elements (text, lines, polygons etc.) to a plot:

gsn_add_* functions: use plot coordinates (must be referenced to a graphic variable)
gsn_*_ndc procedures: use normalize coordinates [0,1] on the workstation

To add a text string:

 newtext = gsn_add_text(wks,plot,"Some text",xpos,ypos,resT)
 gsn_text_ndc(wks,"Some text",xpos,ypos,resT)

To draw a polygon:

 newpoly = gsn_add_polygon(wks,plot,xcoords,ycoords,resP)
 gsn_polygon_ndc(wks,xcoords,ycoords,resP)

To draw a line:

 newline = gsn_add_polyline(wks,plot,xcoords,ycoords,resL)
gsn_polyline_ndc(wks,xcoords,ycoords,resL)

To add a marker (symbols like http://www.ncl.ucar.edu/Document/Graphics/Images/markers.png):

 newmark = gsn_add_polymarker(wks,plot,xpos,ypos,resM)
 gsn_polymarker_ndc(wks,xpos,ypos,resM)

http://www.ncl.ucar.edu/Document/Graphics/Images/markers.png

Folie 52
Introduction to NCL - Mattia Righi

Tips & tricks
 Start from an existing script, if possible

 Use indentation: it is not mandatory, but makes the script more readable

 Use comments (;) inside the script to include some descriptions

 Use printVarSummary to examine variables and ismissing to search
for missing values

 Before writing a function/procedures check for the built-in ones

 Avoid unnecessary do loops, use array arithmetics if possible

 Avoid dimension reordering in arrays: this is an expensive operation

 Save memory: use delete to get rid of large arrays

 Configure the text exitor (e.g. emacs) with highlighting, see this page:
http://www.ncl.ucar.edu/Applications/editor.shtml

 Use the NCL webpage: examples, scripts, manuals, FAQ, mailing-lists…

http://www.ncl.ucar.edu/Applications/editor.shtml

Folie 53
Introduction to NCL - Mattia Righi

Useful links

NCL home http://www.ncl.ucar.edu/index.shtml

Source code http://www.ncl.ucar.edu/Download/

Reference manual http://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/NclExtend.shtml

Language manual http://www.ncl.ucar.edu/Document/Manuals/language_man.pdf

Graphics manual http://www.ncl.ucar.edu/Document/Manuals/graphics_man.pdf

Reference cards http://www.ncl.ucar.edu/Document/Reference_Cards/

DKRZ Supplement https://www.dkrz.de/Nutzerportal-
en/doku/vis/sw/ncl/DKRZ_NCL_Supplements_Doc_layout.pdf/view

FAQ http://www.ncl.ucar.edu/FAQ/

NCL/NCAR mailing list http://www.ncl.ucar.edu/Support/email_lists.shtml

Lecture material http://www.pa.op.dlr.de/~MattiaRighi/NCL/LECTURE/lecture_index.html

Contact Mattia.Righi@dlr.de

http://www.ncl.ucar.edu/index.shtml
http://www.ncl.ucar.edu/Download/
http://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/NclExtend.shtml
http://www.ncl.ucar.edu/Document/Manuals/language_man.pdf
http://www.ncl.ucar.edu/Document/Manuals/graphics_man.pdf
http://www.ncl.ucar.edu/Document/Reference_Cards/
https://www.dkrz.de/Nutzerportal-en/doku/vis/sw/ncl/DKRZ_NCL_Supplements_Doc_layout.pdf/view
https://www.dkrz.de/Nutzerportal-en/doku/vis/sw/ncl/DKRZ_NCL_Supplements_Doc_layout.pdf/view
http://www.ncl.ucar.edu/FAQ/
http://www.ncl.ucar.edu/Support/email_lists.shtml
http://www.pa.op.dlr.de/%7EMattiaRighi/NCL/LECTURE/lecture_index.html
mailto:Mattia.Righi@dlr.de

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43
	Foliennummer 44
	Foliennummer 45
	Foliennummer 46
	Foliennummer 47
	Foliennummer 48
	Foliennummer 49
	Foliennummer 50
	Foliennummer 51
	Foliennummer 52
	Foliennummer 53

