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Technical information

» http://www.pa.op.dIr.de/~RobertSausen/vorlesung/index.html
= Most recent update on the lecture
» Slides of the lecture (with some delay)

= See also LSF https://Isf.verwaltung.uni-muenchen.de/

» Contact: robert.sausen@dIr.de
» Further information:

= www.ipcc.ch
= www.de-ipcc.de

i DLR

10.05.2022




Sausen, Klimaanderung 2.4

w

Contents of IPCC AR 6 2021
Working Group I: the Physical Science Basis

Chapters

Chapter 1: Framing, context, methods

~
Chapter 2: Changing state of the climate system
Chapter 8: Human influence on the climate system
Chapter 4: Future global climate: scenario-based projections and near-term information
Chapter 5: Global carbon and other biogeochemical cycles and teedbacks
Chapter 6: Short-lived climate forcers
Chapter 7: The Earth's energy budget, climate feedbacks, and climate sensitivity
Chapter 8: Water cycle changes
Chapter 9: Ocean, cryosphere, and sea level change
Chapter 10: Linking global to regional climate change
Chapter 11: Weather and climate extreme events in a changing climate
Chapter 12: Climate change information for regional impact and for risk assessment
Supplementary Material N
Annexes v

https.//www.ipcc.ch/report/ar6/wg1/#FullReport
#DLR 7 7 = g : 5 o

by e

E

10.05.2022



Sausen, Klimaanderung 2.4

N

i DLR

Evaluation and communication of degree of certainty in ARG findings

1. What evidence axisis?

2. Evaluale evidence

Type Cuaaity
Cuandity Consistency
and scientific agreement

{

3. Sufficient evidence and
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confidenca?

1
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4, Evalyale configence based on
evidenca and agreement
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5. Sufficient confidence and quantitative or

probabilstc evidence?
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Likslireod Ranges
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Likelihood Oulcome
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Past projections of giobal temperature and the
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Assessed fact
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Assessed confidence
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diowicke (0.} are at highes levels tham e any time in &t least the
past wo years (high confidence | (2.2}

Global mean sea fevel (GMSL) is rising, and the: rate of GMSL
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Assessed likelihood
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Socio-economic challenges

for mitigation

Die SSP-Szenarien
Shared Socioeconomic Pathways

%* SSP5 % SSP 3
(Mitigation challenges dominate) (High challenges)
Fossil-fueled Regional rivalry
development ARocky Road
Taking the Highway
% SSP 2
(Intermediate challenges)
Middle of the road
* SSP1 * SSP 4
(Low challenges) (Adaptation challenges dominate)
Sustainability Inequality
Taking the Green Road A Road Divided

Socio-economic challenges
for adaptation
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Die SSP-Szenarien — Shared Socioeconomic Pathways
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Selected indicators of global climate change
from CMIP6 historical and scenario simulations

Figure 4.2: Selected indicators of global climate change from CMIP6 historical and scenario simulations. (a)
o Global surface air temperature changes relative to the 1995-2014 average (left axis) and relative to the
1 Cuobe WpR e shaes 10 L) Globalland precipitation change 1 851900 average (right axis; offset by 0.82°C, which is the multi-model mean and close to observed

g 1= ;E&m i L f & PRSI best estimate, Cross-Chapter Box 2.15 Table 1). (b) Global land precipitation changes relative to the
Tel=n s z 1995-2014 average. (¢) September Arctic sea-ice area. (d) Global mean sea-level change (GMSL)
g ] e g 8 relative to the 19952014 average. (a), (b)'and(d) are annual averages, (c) are September averages. In
] -4 8 3 (a)-(c), the curves show averages over the CMIP6 simulations, the shadings around the SSP1-2.6 and
£ ‘o N § SSP3-7.0 curves show 5-95% ranges, and the numbers near the top show the number of model
. I ."é;'.'..'&;;. _Emt © | simulations used: Results are derived from concentration-driven simulations. In (d), the barystatic
0 00 260 2100 0 200 2050 2190 contribution to GMSL (i.e., the contribution from land-ice melt) has been added offline to the CMIP6
{63 Bapteiibar Arcic seaics area simulated contributions fromrthermal expansion (thermosteric). The shadings around the SSP1-2.6 and
" Taes 21202 _ c SSP3-7.0 curves show 5-95% ranges. The dashed curve is the low confidence and low likelihood
7 &g =R /| coutcomeatthe high end of SSP5-8.5 and reflects deep uncertainties arising from potential ice-sheet and
g § o i Soes e il /| 1ce-cliff instabulities. This curve at year 2100 indicates 1.7 m of GMSL rise relative to 1995-2014. More
g 2 information on the calculation of GMSL are available in Chapter 9, and further regional details are
% % ey provided in the Atlas. Further details on data sources and processing are available in the chapter data table
2 (Table 4.SM.1).
1950 2000 Vi 2050 2100
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(a) Global temperature change
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Near-term change of seasonal mean surface temperature

Figure 4.12: Near-term change of seasonal mean surface temperature. Displayed are projected spatial patterns of
CMIP6 multi-model miean change (°C) in (top) DJF and (bottom) JJA near-surface air temperature for
2021-2040 from SSP1-2.6 and SSP3-7.0.relative to 1995-2014. The number of models used is indicated
in the top right of the maps. No overlay indicates regions where the change 1s robust and /ikely emerges
from internal variability, that is, where at least 66% of the models show a change greater than the

Seasonal mean temperature change internal-variability threshold (see'Seetion 4.2.6) and at least 80% of the models agree on the sign of
DUF 55P1-2.6 (2021-40) [JF 55P3-7.0 (2021-2040)

change. Diagonal lincs indicate regions with no change or no robust significant change, where fewer than
66% of the models show change greater than the internal-variability threshold. Crossed lines indicate
areas of conflicting signals whereat least 66% of the models show change greater than the internal-
variability threshold but fewer than 80% of all models agree on the sign of change. Further details on data
sources and processing are available in the chapter data table (Table 4.SM.1).
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Seasonal mean temperature change
DJF SSP1-2.6 (2021-40) DJF SSP3-7.0 (2021-2040)
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Simulations over the period 1995-2040, encompassing the recent past and
the next twenty years, of two important indicators of global climate change

FAQ 4.1, Figure 1: Simulations over the period 1995-2040, encompassing the recent past and the next twenty

FAQ 4.1: How will climate change over

the next 20 years?
Current climatic trends will continue in the next 2 decades but their
exact magnitude cannot be predicted, because of natural variability,
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years, of two important indicators ef global climate change. (top) global surface temperature,
and (bottom), the area of Arctic sea ice in September. Both quantities are shown as deviations
from the average over the period 1995-2014. The black curves are for the historical period ending
mn 2014; the blue curves represent a low-emission scenario (SSP1-2.6) and the red curves one
high-emission scenario (SSP3-7.0).
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FAQ 4.1: How will climate change over
the next 20 years?

Current climatic trends will continue in the next 2 decades but their
exact magnitude cannot be predicted, because of natural variability.
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Mid- and long-term change of annual mean surface temperature

Figure 4.19: Mid- and long-term change of annual mean surface temperature. Displayed are projected spatial
patterns of multi-model mean change in annual mean near-surface air temperature (°C) in 2041-2060 and
2081-2100 relative to 1995-2014 for (top) SSP1-2.6 and (bottom) SSP3-7.0. The number of models used
1s indicated in the top right of the maps. No overlay indicates regions where the change is robust and
likely emerges from internal variability, that is, where at least 66% of the models show a change greater
P s e - -, than the internal<variability threshold (see Section 4.2.6) and at least 80% of the models agree on the sign
w2 . | ramms, © of change. Diagonal lines indicate regions with no change or no robust significant change, where fewer
" ' than 66% of the models show change greater than the internal-variability threshold. Crossed lines indicate
areas of conflicting signals where at least 66% of the models show change greater than the internal-
variability threshold but fewer than 80% of all models agree on the sign of change. Further details on data
sources and processing are available in the chapter data table (Table 4.SM.1).

Sausen, Klimaanderung 2.4
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Annual mean temperature change
SSP1-2.6 (2041-60) SSP1-2.6 (2081-2100)
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Difference of surface temperature change between JJA and DJF

Warming difference JJA vs. DIF (S5P1-2.6) Warming difference JJA vs. DIF (55P3-7.0)

ENTTTT [ [ [ . High model agreement
S <43 J45 4 P50 054 152 3 4 /////7] Low model agreement
(°C)

Figure 4.20: Difference of surface temperature change between JJA and DJF. Displayed are spatial patterns of
multi-model mean difference in projected warming in JJA:mmus warming in DJF i 2081-2100 relative
to 1995-2014 for (left) SSP1-2.6 and (right) SSP3-7.0. Diagonal lines mark areas where fewer than 80%
of the models agree on the sign of change, and no overlay where at least 80% of the meodels agree.
Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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Difference of surface temperature change between JJA and DJF

Warming difterence JJA vs. DJF (SSP1-2.6) Warming difference JJA vs. DJF (SSP3-7.0)
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Long-term change of annual and zonal mean atmospheric temperature

Figure 4.22: Long-term change of annual and zonal mean atmespheric temperature. Displayed are multi-model
mean change in annual and zonal mean atmospheric température (°C) 20812100 relative to 1995—
2014 for (left) SSP1-2.6 and (right) SSP5-8.5:The number of models used is-indicated in the top right of
the maps. Diagonal lines indicate regions where less than 80% of the models agree on the sign of the
change and no overlay where 80% orimore of the models agree on the sign of the change. Further details
on data sources and processing are‘available in the chapter data table (Table 4.SM.1).
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Statements in the Executive Summary
Precipitation (1)

Annual global land precipitation will increase over the 21st century as GSAT increases
(high confidence). The likely range of change in globally averaged annual land
precipitation during 2081- 2100 relative to 1995-2014 is —0.2—4.7% in the low-emission
scenario SSP1-1.9 and 0.9-12.9% in the high-emission scenario SSP5-8.5, based on all
available CMIP6 models. The corresponding likely ranges are 0.0—-6.6% in SSP1-2.6, 1.5—
8.3% in SSP2-4.5, and 0.5-9.6% in SSP3-7.0. {4.3.1,4.5.1,4.6.1, 8.4.1}
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Selected indicators of global climate change
from CMIP6 historical and scenario simulations

Figure 4.2: Selected indicators of global climate change from CMIP6 historical and scenario simulations. (a)
Global surface air temperature changes relative to the 1995-2014 average (left axis) and relative to the

i Aty i oY 10 gf'::’i::;"'“ip“mi"" chanee  1850-1900 average (right axis; offset by 0.82°C, which is the multi-model mean and close to observed

best estimate, Cross-Chapter Box 2.15Table 1). (b).Global land precipitation changes relative to the
1995-2014 average. (¢) September Arctic sea-ice area. (d) Global mean sea-level change (GMSL)
relative to the 19952014 average. (a), (b)'and(d) are annual averages, (c) are September averages. In
(a)-(c), the curves show averages over the CMIP6 simulations, the shadings around the SSP1-2.6 and
SSP3-7.0 curves show 5-95% ranges, and the numbers near the top show the number of model
o | simulationsused:Results are derived from concentration-driven simulations. In (d), the barystatic
s 0 ws0 2000 200 210 contribution to GMSL (i.e., the contribution from land-ice melt) has been added offline to the CMIP6
simulated contributions fromrthermal expansion (thermosteric). The shadings around the SSP1-2.6 and
SSP3-7.0 curves show 5-95% ranges. The dashed curve is the low confidence and low likelihood
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Co el L
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Relative to 1995-2014 (deg C)
L)
1
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{c) September Arctic sea ice area

L@8w9 2124 1922

7 _:,_,E' = égpé_? ué; m;g outcomeat-the high end of SSP5-8.5 and reflects deep uncertainties arising from potential ice-sheet and
5 g ol e /| | ice-cliff instabilities. This curve at year 2100 indicates 1.7 m of GMSL rise relative to 1995-2014. More
g 3 information on the calculation of GMSL are available in Chapter 9, and further regional details are
% £ %% provided in the Atlas. Further details on data sources and processing are available in the chapter data table
2 (Table 4.SM.1).
1950 QOIOO ¥ 20I50 2100
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Global temperature and precipitation changea
from CMIP6 historical and scenario simulations

(a) Global temperature change 10 (b) Global land precipitation change
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Statements in the Executive Summary
Precipitation (1)

Annual global land precipitation will increase over the 21st century as GSAT increases
(high confidence). The likely range of change in globally averaged annual land
precipitation during 2081- 2100 relative to 1995-2014 is —0.2—4.7% in the low-emission
scenario SSP1-1.9 and 0.9-12.9% in the high-emission scenario SSP5-8.5, based on all
available CMIP6 models. The corresponding likely ranges are 0.0—-6.6% in SSP1-2.6, 1.5—
8.3% in SSP2-4.5, and 0.5-9.6% in SSP3-7.0. {4.3.1,4.5.1,4.6.1, 8.4.1}

Precipitation change will exhibit substantial regional differences and seasonal contrast
as GSAT increases over the 21st century (high confidence). As warming increases, a
larger land area will experience statistically significant increases or decreases in precipitation
(medium confidence). Precipitation will very likely increase over high latitudes and the tropical
oceans, and likely increase in large parts of the monsoon region, but likely decrease over large
parts of the subtropics in response to greenhouse gas-induced warming. Interannual variability
of precipitation over many land regions will increase with global warming (medium confidence).
{4.51,4.6.1, 8.4.1}
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CMIP6 annual mean precipitation changes (%)
from historical and scenario simulations

Figure 4.4:

CMIP6 annual mean precipitation changes (%) from historical and scenario simulations. (a)

Northern Hemisphere extratropics (30°N—90°N). (b) North Atlantic subtropics (5°N-30°N, 80°W-0°).
Changes are relative to 1995-2014 averages. Displayed are multi-model averages and; in parentheses, 5—
95% ranges. The numbers inside each panel are the number of model simulations. Results are derived
from concentration-driven simulations. Further details on.data sources and processing are available in the

chapter data table (Table 4.SM.1).
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CMIP6 annual mean precipitation changes (%)
from historical and scenario simulations

(a) Extratropical precipitation change (b) Subtropical precipitation change
(Northern Hemisphere) (North Atlantic)
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Projected spatial patterns of change in annual average precipitation
(expressed as a percentage change) at different levels of global warming

Figure 4.32: Projected spatial patterns of change in annual average precipitation (expressed as a percentage
change) at different levels of global warming. Displayed are.(a—d) spatial patterns of change in annual
precipitation at 1.5°C, 2°C, 3°C; and 4°C of global warming reletive to the period 1850—1900. No map
overlay indicates regions where the change is robust and /ikely emerges from internal variability, that is,
where at least 66% of themodels show a change ‘greater than the internal-variability threshold (see
Section 4.2.6) and at least 80% of the models agree on the sign of change. Diagonal lines indicate regions
with no change or norobust significant change, where fewer than 66% of the models show change greater

@ than the internal-variability threshold. Crossed lines indicate areas of conflicting signals where at least
66% of the models show change greater than the internal-variability threshold but fewer than 80% of all
models agree on the sign of change. Values were assessed from a 20-year period at a given warming
level, based on'model simulations under the Tier-1 SSPs of CMIP6. Further details on data sources and
processing are available in the chapter data table (Table 4.SM.1).
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Long-term changes in seasonal mean relative humidity

Seasonal mean relative humidity change
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Long-term change of seasonal mean precipitation

Figure 4.24: Long-term change of seasonal mean precipitation. Displayed are projected spatial patterns of multi-

Seasonal mean precipitation change
DIF SSP1-2.6 (2081-2100) DJF S5P3-7.0 (2081-2100)

e
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10.05.2022

model mean change (%) in (top) DJF .and (bottom) JJA'mean precipitation in 2081-2100 relative to
1995-2014, for (left) SSP1-2.6 and (right) SSP3-7.0. The number of models used is indicated in the top
right of the maps. No:map overlay indicatesregions where the change is robust and /ikely emerges from
internal variability, that is, where at least 66% of the models show a change greater than the internal-
variability threshold (see Section 4.2:6) and at least 80% of the models agree on the sign of change.
Diagonal lines indicate regions with no change or no robust significant change, where fewer than 66% of
the models show change greater than the internal-variability threshold. Crossed lines indicate areas of
conflicting signals'where at least 66% of the models show change greater than the internal-variability
threshold buf fewer than 80% of all models agree on the sign of change. Further details on data sources
and proeessing are available in the chapter data table (Table 4.SM.1).
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Seasonal mean precipitation change
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Regional changes in temperature (left) and precipitation (right) are
proportional to the level of global warming

FAQ 4.3, Figure 1: Regional changes in temperature (left) and precipitation (right) are proportional to the level
of global warming, irrespective of the scenario thtough which the level of global warming is
reached. Surface warming and precipitation change are shown relative to the 1850—1900 climate,
and for time periods over which the globally averaged surface warming is 1.5°C (top) and 3°C

(bottom), respectively. Changes presented hereare based on thirty-one CMIP6 models using the
high-emission scenario SSP3-7.0.

FAQ 4.3: Climate change and regional patterns
Climate change is not uniform and proportional to the level of global warming.

Warming will be stronger in the Arctic, Precipitation will increase in high latitudes, the tropics
on land and in the Northern Hemisphere and monsoon regions and decrease in the subtropics

+1.5°C

+3.0°C
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FAQ 4.3: Climate change and regional patterns

Climate change is not uniform and proportional to the level of global warming.

Warming will be stronger in the Arctic, Precipitation will increase in high latitudes, the tropics
on land and in the Northern Hemisphere and monsoon regions and decrease in the subtropics

= 7..__‘-:7?:; '.I ._ - =y

+1.5°C

IPCC 2021, Chap. 4
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Statements in the Executive Summary
Precipitation (2)

Near-term projected changes in precipitation are uncertain, mainly because of natural
internal variability, model uncertainty, and uncertainty in natural and anthropogenic
aerosol forcing (medium confidence). In the near term, no discernible differences in
precipitation changes are projected between different SSPs (high confidence). The
anthropogenic aerosol forcing decreases in most scenarios, contributing to increases in GSAT

(medium confidence) and global-mean land precipitation (low confidence). {4.3.1, 4.4.1, 4.4 4,
8.5}
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Near-term change of seasonal mean precipitation

Figure 4.13: Near-term change of seasonal mean precipitation. Displayed are projected spatial patterns of CMIP6
multi-model mean change (%) in (top) DJF and (bottom) JJA precipitation from SSP1-2.6 and SSP3-7.0
in 2021-2040 relative to 1995-2014. The number of models used is indicated in the top right of the maps.
No overlay indicates regions where the change is robust and /ikely emerges from internal variability, that
is, where at least 66% of the models show a change greater than the internal-variability threshold (see

Seasonal mean precipitation change Section 4.2.6) and at least 80% of the models-agree on the sign of change. Diagonal lines indicate regions
DJF SSP1-2.6 (2021-40) DJF S5P3-7.0 (2021-2040) with no change or no robust significant change, where fewer than 66% of the models show change greater
Bedses S T S o than the internal-variability threshold. Crossed lines indicate areas of conflicting signals where at least
- L e S - 66% of the models show change greater than the internal-variability threshold but fewer than 80% of all

: e - e B % models agree on the sign of change. Further details on data sources and processing are available in the
_ S 3 : =SS Es S P Sy chapter data table (Table 4.SM.1).
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Statements in the Executive Summary
Precipitation (3)

In response to greenhouse gas-induced warming, it is likely that global land monsoon
precipitation will increase, particularly in the Northern Hemisphere, although Northern
Hemisphere monsoon circulation will likely weaken. In the long term (2081-2100),
monsoon rainfall change will feature a north—south asymmetry characterized by a greater
increase in the Northern Hemisphere than in the Southern Hemisphere and an east—west
asymmetry characterized by an increase in Asian-African monsoon regions and a decrease in
the North American monsoon region (medium confidence). Near-term changes in global
monsoon precipitation and circulation are uncertain due to model uncertainty and internal
variability such as Atlantic Multi-decadal Variability and Pacific Decadal Variability (medium
confidence). {4.4.1,4.5.1, 8.4.1, 10.6.3}
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Time series of global land monsoon precipitation and Northern Hemisphere
summer monsoon (NHSM) circulation index anomalies.

Figure 4.14: Time series of global land monsoon precipitation and Northern Hemisphere summer monsoon
(NHSM) circulation index anomalies. (a) Global land monsoon precipitation index anemalies.(Unit: %)
defined as the area-weighted mean precipitation rate in the global land monsoon domain defined by Wang
et al. (2013) for the CMIP6 historical simulation for 1950-2014 and five SSPs 2015-2100. (b) Anomalies
in NHSM circulation index (Unit: m s!), defined as the vertical shear of zonal winds:between 850 and
200 hPa averaged in a zone stretching from Mexico eastward to the Philippines (0°—20°N, 120°W—
120°E) (Wang et al., 2013) in the CMIP6 historical simulation and five SSPs. One realization is averaged
from each model. Anomalies are shown relative to the present-day (1995-2014) mean. The curves show
averages over the simulations, the shadings around the SSP1-2.6 and SSP5-8.5.curves show 5-95%
ranges, and the numbers near the top show the number of model simulations used. Further details on data
sources and processing are available in the chapter data table (Table 4:SM.1).
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Time series of global land monsoon precipitation and Northern Hemisphere
summer monsoon (NHSM) circulation index anomalies.

(a) Global land monsoon precipitation index

(b) NHSM Circulation Index
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Statements in the Executive Summary
Precipitation (4)

It is likely that at least one large volcanic eruption will occur during the 21st century. Such an
eruption would reduce GSAT for several years, decrease global-mean land precipitation, alter
monsoon circulation, modify extreme precipitation, and change the profile of many regional
climatic impact-drivers. A low-likelihood, high-impact outcome would be several large eruptions
that would greatly alter the 21st century climate trajectory compared to SSP-based Earth
system model projections. {Cross-Chapter Box 4.1}
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Modes of variability (1)

The Southern Annular Mode (SAM) is a climate driver that can
influence rainfall and temperature in Australia. The SAM refers to the
(non-seasonal) north-south movement of the strong westerly winds
that blow almost continuously in the mid- to high-latitudes of the
southern hemisphere. The station-based index of the SAM is based on
the zonal pressure difference between the latitudes of 40S and 65S.

The Arctic oscillation (AO) or Northern Annular Mode/Northern
Hemisphere Annular Mode (NAM) is a weather phenomenon at the
Arctic pole north of 20 degrees latitude. It is an important mode of
climate variability for the Northern Hemisphere. The southern
hemisphere analogue is called the Antarctic oscillation or Southern
Annular Mode (SAM). The index varies over time with no particular
periodicity, and is characterized by non-seasonal sea-level pressure
anomalies of one sign in the Arctic, balanced by anomalies of opposite
sign centered at about 37-45°N

i DLR
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Statements in the Executive Summary

Large-scale Circulation and Modes of Variability (1)

In the near term, the forced change in Southern Annular Mode in austral summer is
likely to be weaker than observed during the late 20th century under all five SSPs
assessed. This is because of the opposing influence in the near- to mid-term from
stratospheric ozone recovery and increases in other greenhouse gases on the Southern
Hemisphere summertime mid-latitude circulation (high confidence). In the near term, forced
changes in the Southern Annular Mode in austral summer are therefore likely to be smaller
than changes due to natural internal variability. {4.3.3, 4.4.3}
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CMIP6 Annular Mode index change (hPa) from 1995-2014 to 2021-2040

(a) Northern Annular Mode

(b) Southern Annular Mode
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Figure 4.17: CMIP6 Annular Mode index change (hPa) from 1995-2014 to 2021-2040. (a) NAM and (b) SAM.
The NAM is defined as the difference in zonal mean sea-level pressure(SLP) at 35°N and 65°N (Li and
Wang, 2003) and the SAM as the difference in zonal mean SLP-at 40°S and 65°S (Gong and Wang,
1999). The shadings are the 5-95% ranges across the simulations. The numbers near the'top of each panel
are the numbers of model simulations in each SSP-@nsemble. Further details on data sources and
processing are available in the chapter data table (Table 4.SM.1).
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CMIP6 Annular Mode index change (hPa) from 1995-2014 to 2021-2040
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Statements in the Executive Summary

Large-scale Circulation and Modes of Variability (1)

In the near term, the forced change in Southern Annular Mode in austral summer is
likely to be weaker than observed during the late 20th century under all five SSPs
assessed. This is because of the opposing influence in the near- to mid-term from
stratospheric ozone recovery and increases in other greenhouse gases on the Southern
Hemisphere summertime mid-latitude circulation (high confidence). In the near term, forced
changes in the Southern Annular Mode in austral summer are therefore likely to be smaller
than changes due to natural internal variability. {4.3.3, 4.4.3}

In the long term, the Southern Hemisphere mid-latitude jet is likely to shift poleward
and strengthen under SSP5-8.5 relative to 1995-2014. This is likely to be accompanied by
an increase in the Southern Annular Mode index in all seasons relative to 1995-2014. For
SSP1-2.6, CMIP6 models project no robust change in the Southern Annular Mode index in the
long term. It is likely that wind speeds associated with extratropical cyclones will strengthen in
the Southern Hemisphere storm track for SSP5-8.5. {4.5.1, 4.5.3}
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CMIP6 Annular Mode index change from 1995-2014 to 2081-2100

(a) Northern Annular Mode (b) Southern Annular Mode
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Figure 4.30: CMIP6 Annular Mode index change from 1995-2014 to 2081-2100: (a) NAM and (b) SAM. The
NAM is defined as the difference in zonal mean SLP at 35°N and 65°N (Li and Wang, 2003) and the
SAM as the difference in zonal mean SLP at 40°S and 65°S (Gonig and-Wang, 1999). The shadings are
the 5-95% ranges across the simulations. The numbers near the top are the numbers‘of model simulations

in each SSP ensemble. Further details on data sources and processingare available in the chapter data
table (Table 4.SM.1).
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CMIP6 Annular Mode index change from 1995-2014 to 2081-2100
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Statements in the Executive Summary

Large-scale Circulation and Modes of Variability (2)

The CMIP6 multi-model ensemble projects a long-term increase in the boreal wintertime
Northern Annular Mode index under the high-emission scenarios of SSP3-7.0 and SSP5-
8.5, but regional changes may deviate from a simple shift in the mid-latitude circulation.
Substantial uncertainty and thus low confidence remain in projecting regional changes in
Northern Hemisphere jet streams and storm tracks, especially for the North Atlantic basin in
winter; this is due to large natural internal variability, the competing effects of projected upper-
and lower-tropospheric temperature gradient changes, and new evidence of weaknesses in
simulating past variations in North Atlantic atmospheric circulation on seasonal-to-decadal
timescales. One exception is the expected decrease in frequency of atmospheric blocking
events over Greenland and the North Pacific in boreal winter in SSP3-7.0 and SSP5-8.5
scenarios (medium confidence). {4.5.1}
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Long-term change of zonal mean zonal wind

Figure 4.26: Long-term change of zonal.mean zonal wind. Dispayed are multi-model mean change in (left) boreal
winter (DJF) and (right) austral winter (JJA) zonal mean zonal wind (m s!) in 2081-2100 for (top) SSP1-
2.6'and (right) SSP3-7.0 relative to 1995-2014. The 1995-2014 climatology is shown in contours with
spacing 10 m s'. Diagonal lines indicate regions where less than 80% of the models agree on the sign of
the change and no.overlay where at least 80% of the models agree on the sign of the change. Further
details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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Changes in extratropical storm track density

(a) NH DJF 2080-2100 (13)
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Figure 4.27: Changes in extratropical storm track density. Displayed are projected spatial pattern of multi-model
mean change of extratropical storm track densityin winter (NH DJF and:SH JJA) in 2080-2100 for
SSP5-8.5 relative to 1979-2014 based-on.13 CMIP6 models. Diagonal lines indicate regions where fewer
than 80% of the models agree on the sign of the change and.no overlay where at least 80% of the models
agree on the sign of change. Units are number density per 5 degree spherical cap per month. Further
#7 details on data sources and processing are availablein the chapter data table (Table 4.SM.1).
DLR ; .

VR e

IPCC 2021, Chap. 4

Sausen, Klimaanderung 2.4

53 10.05.2022 l ;



Sausen, Klimaéanderung 2.4

Changes in extratropical storm track density
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Modes of variability (2)

Blocks in meteorology are large-scale patterns in the atmospheric pressure field that are
nearly stationary, effectively "blocking" or redirecting migratory cyclones. They are also
known as blocking highs or blocking anticyclones. These blocks can remain in place for

several days or even weeks, causing the areas affected by them to have the same kind of
weather for an extended period of time.
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Projected wintertime atmospheric blocking frequencies
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Figure 4.28: Projected wintertime atmospheric blocking frequencies. Box plot showing Deceniber-to-March
atmospheric blocking frequencies from historical simulations over 1995-2014 and projections over 2081—
2100, over (a) the Central European region (20°W—20°E; 45°N—65°N), (b) the Greenland region (65°W—
20°W, 62.5°N-72.5°N), (c) the North Pacific region (130°E=150°W, 60°N—75°N). Values show the
percentage of blocked days per season following the (Davini etal., 2012) index. Median values are the
thick black horizontal bar. The lower whiskers extend from.the first quartile to the smallest value in the
ensemble, and the upper whiskers extend from the third quartile to the largest value. The whiskers are
limited to an upper bound that is 1.5 times the interquartile range (the'distance between the third and first
quartiles). Black dots show outliers from the whiskers. The numbers below each bar report the number of
models included. Observationally based values are obtained as the average of the ERA-Interim
é Reanalysis, the JRA-55 Reanalysis and the NCEP/NCAR Reanalysis. Adapted from (Davini and
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D’Andrea, 2020). Further details on data sources and processing are available in the chapter data table
56 10.05.2022 (Table 4.SM.1).
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Projected wintertime atmospheric blocking frequencies
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Modes of variability (3)

The Atlantic Multidecadal Oscillation (AMO), also known as Atlantic Multidecadal
Variability (AMV), is the theorized variability of the sea surface temperature (SST) of the
North Atlantic Ocean on the timescale of several decades.

Monthly values for the AMO index, 1856 -2013
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Statements in the Executive Summary

Large-scale Circulation and Modes of Variability (3)

Near-term predictions and projections of the sub-polar branch of the Atlantic Multi-
decadal Variability (AMV) on the decadal timescale have improved in CMP6 models
compared to CMIPS5 (high confidence). This is likely to be related to a more accurate
response to natural forcing in CMIP6 models. Initialization contributes to the reduction of
uncertainty and to predicting subpolar sea surface temperature. AMV influences on the nearby
regions can be predicted over lead times of 5-8 years (medium confidence). {4.4.3}
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Modes of variability (4)

El Nino—Southern Oscillation (ENSO) is an irregular periodic variation in winds and sea
surface temperatures over the tropical eastern Pacific Ocean, affecting the climate of much of

the tropics and subtropics. The warming phase of the sea temperature is known as El Nifio
and the cooling phase as La Nina.
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Statements in the Executive Summary

Large-scale Circulation and Modes of Variability (3)

Near-term predictions and projections of the sub-polar branch of the Atlantic Multi-
decadal Variability (AMV) on the decadal timescale have improved in CMP6 models
compared to CMIPS5 (high confidence). This is likely to be related to a more accurate
response to natural forcing in CMIP6 models. Initialization contributes to the reduction of
uncertainty and to predicting subpolar sea surface temperature. AMV influences on the nearby
regions can be predicted over lead times of 5-8 years (medium confidence). {4.4.3}

It is virtually certain that the El Nino—Southern Oscillation (ENSO) will remain the
dominant mode of interannual variability in a warmer world. There is no model consensus
for a systematic change in intensity of ENSO sea surface temperature (SST) variability over
the 21st century in any of the SSP scenarios assessed (medium confidence). However, it is
very likely that ENSO rainfall variability, used for defining extreme El Nifios and La Ninas, will
increase significantly, regardless of amplitude changes in ENSO SST variability, by the second
half of the 21st century in scenarios SSP2-4.5, SSP3-7.0, and SSP5-8.5. {4.3.3, 4.5.3, 8.4.2}
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Statements in the Executive Summary
Cryosphere and Ocean (1)

Under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, it is likely that the Arctic Ocean
in September, the month of annual minimum sea ice area, will become practically ice-
free (sea ice area less than 1 million km2) averaged over 2081-2100 and all available
simulations. Arctic sea ice area in March, the month of annual maximum sea ice area, also
decreases in the future under each of the considered scenarios, but to a much lesser degree
(in percentage terms) than in September (high confidence). {4.3.2}
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Selected indicators of global climate change
from CMIP6 historical and scenario simulations

Figure 4.2: Selected indicators of global climate change from CMIP6 historical and scenario simulations. (a)
Global surface air temperature changes relative to the 1995-2014 average (left axis) and relative to the

i Aty i oY 10 gf'::’i::;"'“ip“mi"" chanee  1850-1900 average (right axis; offset by 0.82°C, which is the multi-model mean and close to observed

best estimate, Cross-Chapter Box 2.15Table 1). (b).Global land precipitation changes relative to the
1995-2014 average. (¢) September Arctic sea-ice area. (d) Global mean sea-level change (GMSL)
relative to the 19952014 average. (a), (b)'and(d) are annual averages, (c) are September averages. In
(a)-(c), the curves show averages over the CMIP6 simulations, the shadings around the SSP1-2.6 and
SSP3-7.0 curves show 5-95% ranges, and the numbers near the top show the number of model
o | simulationsused:Results are derived from concentration-driven simulations. In (d), the barystatic
s 0 ws0 2000 200 210 contribution to GMSL (i.e., the contribution from land-ice melt) has been added offline to the CMIP6
simulated contributions fromrthermal expansion (thermosteric). The shadings around the SSP1-2.6 and
SSP3-7.0 curves show 5-95% ranges. The dashed curve is the low confidence and low likelihood
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5 g ol e /| | ice-cliff instabilities. This curve at year 2100 indicates 1.7 m of GMSL rise relative to 1995-2014. More
g 3 information on the calculation of GMSL are available in Chapter 9, and further regional details are
% £ %% provided in the Atlas. Further details on data sources and processing are available in the chapter data table
2 (Table 4.SM.1).
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(a) Global temperature change - (b) Global land precipitation change
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Statements in the Executive Summary
Cryosphere and Ocean (1)

Under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, it is likely that the Arctic Ocean
in September, the month of annual minimum sea ice area, will become practically ice-
free (sea ice area less than 1 million km2) averaged over 2081-2100 and all available
simulations. Arctic sea ice area in March, the month of annual maximum sea ice area, also
decreases in the future under each of the considered scenarios, but to a much lesser degree
(in percentage terms) than in September (high confidence). {4.3.2}

Under the five scenarios assessed, it is virtually certain that global mean sea level
(GMSL) will continue to rise through the 21st century. For the period 2081-2100 relative to
1995-2014, GMSL is likely to rise by 0.46—0.74 m under SSP3-7.0 and by 0.30-0.54 m under
SSP1-2.6 (medium confidence). For the assessment of change in GMSL, the contribution from
land-ice melt has been added offline to the CMIP6-simulated contributions from thermal
expansion. {4.3.2. 9.6}
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(a) Global temperature change - (b) Global land precipitation change
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Statements in the Executive Summary

Cryosphere and Ocean (2)

It is very likely that the cumulative uptake of carbon by the ocean and by land will
increase through to the end of the 21st century. Carbon uptake by land shows greater
increases but with greater uncertainties than for ocean carbon uptake. The fraction of
emissions absorbed by land and ocean sinks will be smaller under high emission scenarios
than under low emission scenarios (high confidence). Ocean surface pH will decrease steadily
through the 21st century, except for SSP1-1.9 and SSP1-2.6 where values decrease until
around 2070 and then increase slightly to 2100 (high confidence). {4.3.2, 5.4}
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Long-term change of annual and zonal ocean pH

B s paa

Figure 4.29: Long-term change of annual and zonal ocean pH‘.‘Di-splayed are multi-model mean change in annual
and zonal ocean pH in 20812100 relative to the mean of 1995-2014 for SSP1-2.6 and SSP3-7.0,

o SSP1-2.6 ‘espectively. Eleven CMIP6 model results are used. Diagonal lines indicate regions where fewer than
30% of the models agree on the sign of the change and no overlay where at least 80% of the models agree
= on the sign of change: Further details.on data sources and processing are available in the chapter data
< :able (Table 4.SM.1).
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Long-term change of annual and SSP1-2.6
zonal ocean pH
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Statements in the Executive Summary

Climate Response to Emission Reduction, Carbon Dioxide Removal, and Solar
Radiation Modification (1)

If strong mitigation is applied from 2020 onward as reflected in SSP1-1.9, its effect on
20-year trends in GSAT would likely emerge during the near term (2021-2040),
measured against an assumed non-mitigation scenario such as SSP3-7.0 and SSP5-8.5.
However, the response of many other climate quantities to mitigation would be largely
masked by internal variability during the near term, especially on the regional scale
(high confidence). The mitigation benefits for these quantities would emerge only later during
the 21st century (high confidence). During the near term, a small fraction of the surface can
show cooling under all scenarios assessed here, so near-term cooling at any given location is
fully consistent with GSAT increase (high confidence). Events of reduced and increased GSAT
trends at decadal timescales will continue to occur in the 21st century but will not affect the
centennial warming (very high confidence). {4.6.3, Cross-Chapter Box 3.1}
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Statements in the Executive Summary

Climate Response to Emission Reduction, Carbon Dioxide Removal, and Solar
Radiation Modification (2)

Because of the near-linear relationship between cumulative carbon emissions and
GSAT change, the cooling or avoided warming from carbon dioxide removal (CDR) is
proportional to the cumulative amount of CO, removed by CDR (high confidence). The
climate system response to net negative CO, emissions is expected to be delayed by years to
centuries. Net negative CO, emissions due to CDR will not reverse some climate change,
such as sea level rise, at least for several centuries (high confidence). The climate effect of a
sudden and sustained CDR termination would depend on the amount of CDR-induced cooling

prior to termination and the rate of background CO, emissions at the time of termination (high
confidence). {4.6.3, 5.5, 5.6}
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Delayed climate response to CDR-caused net negative CO, emissions

ime (years) lmeyyears)

Figure 4.37: Delayed climate response to CDR-caused net negative CO2 emissions. Multi-model simulated
response in global and annual mean elimate variables for a ramp=up followed by ramp-down of CO..
Atmospheric CO, increases from the pre-industrial level at a rate of 1% yr! to 4xCO,, then decreases at
the same rate to the pre-industrialdevel and then remains constant. The ramp-down phase represents the
period of net negative CO, emissions: a) normalized ensemble mean anomaly of key variables as a
function of year, including atmospheric CO,, surface air temperature, precipitation, thermosteric sea-level
rise (see Glossary), global sea-ice area, Northern Hemisphere sea-ice area in September, and Atlantic
meridional overturning circulation (AMOC); b) surface air temperature; ¢) precipitation; d) September
Arctic sea-ice‘area; €) AMOC; f) thermostatic sea level; 5-year running means are shown for all variables
except thesea-level rise. In b—f, red lines represent the phase of CO, ramp-up, blue lines represent the
phase of €O famp-down, brown lines represent the period after CO; has returned to pre-industrial level,
and black lines represent the'multi-model mean. For all of the segments in b, the solid coloured lines
are CMIP6 models, and the dashed lines are other models (i.e., EMICs, CMIP5 era models). Vertical
dashed lines indicate peak CO, and when CO; again reaches pre-industrial value. The number of CMIP6
and non-CMIP6 models used is indicated in each panel. The time series for the multi-model means (b—f)
and the normalized anomalies (a) are terminated when data from all models are not available, in order to
avoid the discontinuity in the time series. Further details on data sources and processing are available in

the chapterdata table (Table 4.SM.1).
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The Climate Response to Net Negative CO; Emissions in an Ildealized CDRMIP Scenario
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The Climate Response to Net Negative CO; Emissions in an Ildealized CDRMIP Scenario
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Statements in the Executive Summary

Climate Response to Emission Reduction, Carbon Dioxide Removal, and Solar
Radiation Modification (3)

Solar radiation modification (SRM) could offset some of the effects of anthropogenic
warming on global and regional climate, but there would be substantial residual and
overcompensating climate change at the regional scale and seasonal timescale (high
confidence), and there is low confidence in our understanding of the climate response
to SRM, specifically at the regional scale. Since the AR5, understanding of the global and
regional climate response to SRM has improved, due to modelling work with more
sophisticated treatment of aerosol-based SRM options and stratospheric processes. Improved
modelling suggests that multiple climate goals could be met simultaneously. A sudden and
sustained termination of SRM in a high-emission scenario such as SSP5-8.5 would cause a
rapid climate change (high confidence). However, a gradual phase-out of SRM combined with

emissions reductions and CDR would more likely than not avoid larger rates of warming.
{4.6.3}
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Multi-model response per degree global mean cooling in temperature
and precipitation in response to CO, forcing and SRM forcing

Figure 4.38: Multi-model response per degree global mean cooling in temperature and precipitation in response
to CO: forcing and SRM forcing. Top row shows the response to a CO» decrease, calculated as the
difference between pre-industrial control simulation and abrupt4 = CO» simulations where the CO»
concentration is quadrupled abruptly from the pre-industrial level (11-model average); second row shows
the response to a globally uniform solar reduction, calculated as the difference between GeoMIP
experiment G1 and abrupt4 « CO» (11-model average): third row shows the response to stratospheric
sulphate aerosol injection, calculated as the difference between GeoMIP experiment G4 (a continuous
injection of 5Tg SO: per year at one point on the equator into the lower stratosphere against the RCP4.5
background scenario) and RCP4.5 (6-model average): and bottom row shows the response to marine

cloud brightening, calculated as the difference between GeoMIP experiment G4cdnc (increase cloud
droplet concentration number in marine low cloud by 50% over the global ocean against RCP4.5
background scenario) and RCP4.5 (8-model average). All differences (average of years 11-50 of
simulation) are normalized by the global mean cooling in each scenario, averaged over years 11-50.
Diagonal lines represent regions where fewer than 80% of the models agree on the sign of change. The
values of correlation represent the spatial correlation of each SRM-induced temperature and precipitation
change pattern with the pattern of change caused by a reduction of atmospheric CO,. RMS (root mean
square) is calculated based on the fields shown in the maps (normalized by global mean cooling). Further
details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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Statements in the Executive Summary

Climate Change Commitment and Change Beyond 2100 (1)

Earth system modelling experiments since AR5 confirm that the zero CO, emissions
commitment (the additional rise in GSAT after all CO, emissions cease) is small (likely
less than 0.3°C in magnitude) on decadal time scales, but that it may be positive or
negative. There is low confidence in the sign of the zero CO, emissions commitment.
Consistent with SR1.5, the central estimate is taken as zero for assessments of remaining
carbon budgets for global warming levels of 1.5°C or 2°C. {4.7.2, 5.5.2}.
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Zero Emissions Commitment (ZEC)
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< mean is shown as thick black line, individual model simulations are in grey. Further details on data
2] sources and processing are available in the chapter data table (Table 4.SM. I).
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Zero Emissions Commitment (ZEC)
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Statements in the Executive Summary

Climate Change Commitment and Change Beyond 2100 (1)

Earth system modelling experiments since AR5 confirm that the zero CO, emissions
commitment (the additional rise in GSAT after all CO, emissions cease) is small (likely
less than 0.3°C in magnitude) on decadal time scales, but that it may be positive or
negative. There is low confidence in the sign of the zero CO, emissions commitment.
Consistent with SR1.5, the central estimate is taken as zero for assessments of remaining
carbon budgets for global warming levels of 1.5°C or 2°C. {4.7.2, 5.5.2}.

Overshooting specific global warming levels such as 2°C has effects on the climate
system that persist beyond 2100 (medium confidence). Under one scenario including a
peak and decline in atmospheric CO, concentration (SSP5-3.4-0OS), some climate metrics
such as GSAT begin to decline but do not fully reverse by 2100 to levels prior to the CO, peak
(medium confidence). GMSL continues to rise in all models up to 2100 despite a reduction in
CO, to 2040 levels. {4.6.3, 4.7.1, 4.7.2}
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Statements in the Executive Summary

Climate Change Commitment and Change Beyond 2100 (2)

Using extended scenarios beyond 2100, projections show likely warming by 2300,
relative to 1850-1900, of 1.0°C-2.2°C for SSP1-2.6 and 6.6°C-14.1°C for SSP5-8.5. By
2300, warming under the SSP5-3.4-OS overshoot scenario decreases from a peak around
year 2060 to a level very similar to SSP1-2.6. Precipitation over land continues to increase
strongly under SSP5-8.5. GSAT projected for the end of the 23rd century under SSP2-4.5
(2.3—4.6°C) has not been experienced since the mid-Pliocene, about 3 million years ago.
GSAT projected for the end of the 23rd century under SSP5-8.5 (6.6-14.1°C) overlaps with
the range estimated for the Miocene Climatic Optimum (5°C-10°C) and Early Eocene Climatic

Optimum (10°C-18°C), about 15 and 50 million years ago, respectively (medium confidence).
{2.3.1.1,4.7.1}
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Simulated climate changes up to 2300 under the extended SSP scenarios

Figure 4.40: Simulated climate changes up to 2300 under the extended SSP scenarios. Displayed are (a) projected
GSAT change, relative to 1850—1900, from CMIP6 models (individual lines) and MAGICC?7 (shaded
plumes), (b) as (a) but zoomed in to show low-emission scenarios, (c) global land precipitation change,
and (d) September Arctic sea-ice area. Further details on data sources and processing are available in the
chapter data table (Table 4.SM.1).
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Simulated climate changes up to 2300 under the extended SSP scenarios
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Simulated climate changes up to 2300 under the extended SSP scenarios

(c) Global land precipitation change (d) September Arctic sea ice area
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Chapter 5: Global Carbon and other Biogeochemical Cycles
and Feedbacks
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