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Abstract

During the coronavirus pandemic, a simplistic model has been developed as an
attempt of a non-specialist scientist in lockdown to better understand the evo-
lution of infectious diseases. The model is based on Monte Carlo simulation and
applied to a closed, homogeneous population. Basic characteristics of epidemics
dynamics are analyzed and compared to results from a deterministic model.
Sensitivity studies corroborate key recommendations of public health officials.
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Chapter 1

Situation

This report was conceived and written as the coronavirus (Covid-19) pandemic
unfolded in the year 2020, sending some to intensive care units (that includes
UK'’s prime minister) and trapping others in their homes (including HM The
Queen, for that matter, who self-isolated at Windsor Castle). Most members of
the Institute of Atmospheric Physics (IPA) at DLR telework from March 9 to
April 19 and as I write these lines, it is unclear when we will be able to return
to our offices. The public media announced the most important Dos and Dont’s
required to ‘flatten the curve’, meaning to keep the number of infected people
as low as possible to prevent putting too much stress on the healthcare system.

This spurred my interest to learn more about the mathematics of epidemics. My
goal was to explore how viruses spread with simple means, but based on scientific
principles. Out of curiosity and without the slightest idea about the modeling
machinery available in epidemiology, I developed a toy model that describes
how a given population affected by a virus outbreak evolves over time. I picked
a probabilistic framework using the Monte Carlo method that is well-suited
to tackle problems with statistical behavior. Variability in spatial movements,
infection risk, and recovery time of individuals are captured by random processes
with prescribed probability distributions.

My simulations are based on population data corresponding to Wessling in Up-
per Bavaria, Germany, for a number of reasons. Firstly, DLR is located in
Oberpfaffenhofen, a village that is part of Wessling. Secondly, Wessling, where
many who work at DLR live, has a population density that is practically iden-
tical to the national average. Thirdly, as I had no ambition to write the most
computationally efficient computer code and deliberately relied on rather mod-
est computer resources, simulations based on the number of residents in Wessling
could be carried out quickly.

I am neither a physician nor an epidemiologist and have no background in
biology. I am discussing a simplistic model playing with a limited population.
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© Coronavirus COVID-19 (2019-nCoV)

Total Deaths Total Recovered

Total Confirmed 55,092 219

Figure 1.1: Statistics about Covid-19 provided online by the Johns-Hopkins-
University on April 3, 2020.

Of course, picking Wessling as the playground of my model is largely a tongue-
in-cheek decision. The simulations discussed here do mot represent the actual
conditions and behavior of residents of Wessling. Professionals employ much
more sophisticated models that fall far less short from simulating real epidemics
and can be used to make sensible predictions.

Looking at actual data is safe only in hindsight, after careful analyses. For
example, the numbers shown in Fig. 1.1 for Germany differed from those offi-
cially reported by Germany’s public health institute, presumably because the
Baltimore-based Johns-Hopkins-University based their output mainly on non-
official, online media sources.

On the one hand, interpretation of data sampled during an epidemic can easily
be misleading due mainly to the lack of representative testing to identify the
infectious, and, as in the case of Covid-19, when there are many asymptomatic
cases that escape detection. The data themselves are not perfect. For example,
the true number of infected people is difficult to estimate. For this reason, it is
so important to have guidance from scientists and public health professionals to
make sense out of real-time statistical data. On the other hand, I was surprised
to see how well my toy model reproduced key features of the dynamics of an
epidemic. I thought it would be interesting to find out whether this is also true
concerning the outcome of mitigation options.



Chapter 2

Probabilistic Model

The purpose of this chapter is to introduce the model without resorting to
mathematical detail. I rely on the conceptual framework of the well-established
sik-model. The basic version of this classical non-probabilistic (deterministic)
model developed almost a century ago is briefly described in Appendix A. Re-
sults of both approaches are compared in Appendix B.

People are categorized into three compartments: S stands for members of a
population, the susceptibles, capable of contracting an infection. The symbol
I denotes infectious cases, and R indicates those recovered from the infection.
Probabilistic approach including basic model assumptions and movements of
and contact processes between humans are described next.

In the model, populations are homogeneous, i.e. all persons in a given com-
partment are equally susceptible. There is no delay time between becoming
infected and being infectious in the model.! Moreover, recovered members stay
immune, as typical for viral infections.? Immunity is achieved instantly once
an /-member is transferred to the post-exposure R-compartment, which are not
allowed to affect S-members. At this point, it is not known if Covid-19 con-
fers long lasting immunity. Instead of separately specifying those who do not
recover, but, sadly, die after getting sick, this group is subsumed in R, in which
case the abbreviation can be thought of as short for removed.

Many variants of compartmental epidemiological models exist. My model ia
basically a probabilistic SIR-model variant. In addition, I introduce the quaran-
tined, (). Members of this compartment are former /-members that have been
identified after infection and then isolated after a time delay that can be set
arbitrarily. By contrast, the R-compartment is filled by removing /-members
after a time delay that is not arbitrary, but matches the time people need to

IEffects of a nonzero incubation time can be simulated by assigning S-members to an
exposed compartment who are transferred to I when the latent period terminates.
2For bacterial infections, R-members can transform back to S due to the lack of immunity.



Figure 2.1: Compartments and parameters of the probabilistic model developed
in this study. It includes submodels for movement of individuals and contact
between them potentially leading to infection. For the meaning of symbols, see
text or list of symbols.

recover (or die). Figure 2.1 schematically depicts the four model compartments
and the flow between them along with key model parameters.

The number S+1+R+() stays constant over time, ¢, and equals the total popu-
lation, V;. This implicitly assumes that natural births and deaths are neglected
over the course of a simulation (3 months). All members of the population are
allowed to roam freely within the computational domain, but are not allowed
to leave it.> A possible net inflow of people into the computational domain is
also neglected. The population initially contains only few infected cases in I,
N;, hence, Ny — N; susceptibles. Once moved to R, humans are assumed to be
permanently immune, hence there is no R — S flow. The ()-compartment is
initially always empty.

The rate of getting sick depends on movements of S-I-pairs. Here, I apply
the following contact process submodel: when a susceptible person is closer
than a certain infection distance, §, to someone already infected, there is some
probability, P;, that S contracts the virus due to close proximity to I. I resort
on the idealization that P; is temporally and spatially constant. Clearly, a more
socially engaged population is represented by a smaller d-value and P; depends
on hand-washing, face-touching, and the like.

The age since infection, 7, is recorded for each /-member, as the time elapsed
after an infection occurred. At the infection age 7 = t,, infected persons will
recover or die and will thus be moved into the R-category. As a sort of more
realistic vital dynamics, I prescribe ¢, as an expectation value of an exponential

3see Eagles, Hotel California, Asylum Records [1977].



Figure 2.2: Three autocorrelated random walks over 90 days within the compu-
tational domain about 2.5 km wide in each direction.

distribution. An /-member is accepted as being recovered if a random number
0 < r <1 exceeds the probability exp(—At/t,) within the time step, At. Hence,
the transition I — R occurs after ¢, only on average, it may happen earlier or
later.

I-members might also be transferred to the ()-compartment.* Persons are quar-
antined with a probability P, exactly t, days after contracting the virus; this
should represent a strategy to identify (test) and isolate infectious cases after
the time lag t,. Here, P, takes into account that some fraction of infectious
cases escapes identification. Clearly, less stringent quarantine (P, < 1) and
long waiting times for (or insufficient) testing degrade mitigation.

To track individual movements in the movement submodel, each member of
the population is described by a pair of spatial coordinates, {z,y}, within a
quadratic domain with area A and side length L = /A. Here, A = N, /P is
estimated from a prescribed population density, P, and the total population,
N;. Starting locations of S- and /-members are randomly distributed. Roaming
patterns are assumed to be random walks in both directions.’

As illustrated in Fig. 2.2, each member moves with random speeds normally dis-
tributed around zero for both directions. The random walks are characterized
by the speed spread (standard deviation), o. When applying a normal, or Gaus-

4While known as an efficient strategy to eradicate epidemics, I do not consider additional
tracking and isolation of S-members that have been in close contact with /.

5This approach cannot simulate the effect of locations that people regularly and frequently
visit. Such hubs play an important role in accelerating the spread of diseases.



sian, distribution, values much smaller than o are picked much more often than
those greater than . Values > 30 happen to be exceedingly rare. As most real
people do not walk completely random (without preferred direction), I further
assume that individual steps are autocorrelated over a time t., corresponding
to correlated distances of on average d. = o /t..

Walks are advanced with a time step, At = ¢/, chosen such that one walk path
length does not fall below d, but only for the average speed (o). This means
that for encounters that occur with speeds < o, subsequent steps may still find
susceptibles within the infection region, so that these persons are exposed to an
infection risk multiple times, while those walking with speeds > o enter a given
infection region only once per encounter. While I do vary P;, I keep 9, hence
At, constant in all simulations. Otherwise, the number of susceptibles within
and outside of an infection distance would vary, preventing a direct comparison
of results from various sensitivity studies.

While not entirely unrealistic, modeling infections upon contact in this way is
crude. A more physically-based submodel for the contact process needs to take
into account contact time and virus transport via respiratory droplets in a cough
or sneeze. These particles can linger in the air for several minutes and travel up
to 8 m. Clearly, this added complexity quickly complicates matters and there
is much room for improvement in this simplistic submodel.

Travel of S, I, and R is restricted to take place only inside the computational
domain. This is achieved by applying reflective boundary conditions such that
speeds reverse their signs once one of the domain boundaries would be crossed.
As soon as persons are assigned to the ()-compartment, they no longer walk
inside the domain.

Although the simulations are probabilistic in nature, I discuss only one statisti-
cal representation for each of them, for brevity. This is an important limitation.
In a serious scientific study, it would be important to carry out repeated simu-
lations with variations of random variables (ensemble simulations) to generate
a distribution of possible outcomes. One could then analyze either ensemble
statistics (at a given time across all simulations of an ensemble) or ergodic
statistics (over time for each simulation of an ensemble) and decide with the
help of appropriate hypotheses tests whether two scenarios are really different
due to altered input parameters and not just different by chance.

During the Covid-19 epidemic, reproduction numbers were at times mentioned
in media reports. The basic reproduction number, Ry > 1, is defined as the
average number of secondary (new) infectious cases caused by a single primary
case (while the latter is infectious) in a fully susceptible population. It describes
the exponential growth of the infection in the initial phase of an epidemic and
is used to estimate how infectious diseases are transmitted and to define ap-
propriate intervention or mitigation strategies. Appendix A provides a more
quantitative interpretation of Rg.



Chapter 3

Applications

3.1 Scenario overview

The purpose of sensitivity studies that will be compared to a baseline scenario
is to explore how changes in model parameters related to health intervention or
mitigation options alter the time evolution of an epidemic. Let me once again
emphasize that in no case do the simulations represent real world Wessling
conditions at any time.

I designed a baseline scenario (B) and two sensitivity studies with higher risk
of infection (R) and quick containment of infectious persons (Q).

The complete set of parameter values for all scenarios is given in Tab. 3.1.
Population density, P = 240000/km?, and total population, N; = 5476, have
been representative for Wessling in 2018, corresponding to a domain area of
A =22.6km? (L = 4.76km). For comparison, the mean free path per resident
is about 6m, estimated from the average area per person, A/N; = 41.3m?.
Residents walk randomly with an autocorrelation time of 30 min, at least during
the virtual epidemics, giving a correlated path of length d. = 21 m for the typical
speed of 1km/d.

‘tc,min o,km/d ém t..d N, P, P, t,d

B 30 1 2 10 5 02 0 oo
R 0.4
Q 02 5

Table 3.1: Parameter values used in the simulations. For the sensitivity studies
R and Q, only parameter changes relative to the baseline scenario B are listed.



Each scenario works with 5 initial infected residents placed randomly within the
domain. Values reported in the media for the recovery time (up to about 17
days) varied. The value 10d used here is guided by the rule established during
Covid-19 that persons who had contact with infected people were told to self-
isolate for 2 weeks.! Recall that the model uses a probability distribution for
the recovery time with ¢, as the mean value. An infection probability of 0.2
is a plausible guess; I have not found reliable information to better constrain
this parameter for Covid-19. AN interaction distance of 1.5 — 2m has been
recommended by epidemiologists for this virus.

Although it would be instructive, I did not carry out simulations with changed
N; (more infectious cases at the beginning accelerate the epidemic) or o (faster
travel spreads the virus more aggressively). In the same vein, longer infection
periods (longer t¢,.) lead in total to more infected persons. All simulations run
up to 90 days with a time step of 2 min.

3.2 Baseline Scenario

I analyze scenario B with the help of Fig. 3.1 and deduce first implications for
Wessling. This scenario does not include quarantine measures.
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Figure 3.1: Temporal evolution of occupation of model compartments S, I, and
R for the baseline scenario.

First focus on the solid curves. The number of susceptibles decreases over the

1On April 6, the country with the lowest fraction of infected people was Vatican City:
0.88% based on 7 confirmed cases in a total population of 799. Clearly, the isolation strategy
worked well there.



course of the epidemic and approaches a constant value (472) at the end of the
simulation. Therefore, about 8% of the residents would need vaccination to
immunize to be prepared for the next outbreak. The number of infectious cases
rises quickly initially, levels off taking a maximum? of 1101 at day 36, and then
approaches zero. Hence, at the peak of the epidemic, about 20% of the residents
were infected. The removed compartment is filled over time reaching 4 992 after
90 days.

The above is in good general agreement with the predictions of the determin-
istic model outlined in Appendix A. For this reason, I fitted the simulated
I(t)-curve to an exponential function during the

first 5 days and obtained a net growth rate of =
0.410166 per day. (The inset shows the fit as a =

blue curve and the data as red circles.) This yields =

a basic reproduction number Ry ~ 5, somewhat =

above the value currently estimated for Covid-19. =~ . —
The rate of infection per /-member is at, ~ 5/d. Lo

The time to infect one susceptible individual by one

infected person is initially 1/(aSg) ~ 2 days; for comparison, I recall that an
I-member recovers on average in t,, = 10 days.

3.3 Sensitivity Studies

Health risk changes are modeled by doubling the probability of infection in
scenario R. Results are shown in Fig. 3.2.

Compared to B, scenario R assumes a probability of infection that is twice
as large than in the baseline case. As a result, the number of susceptibles
falls off more quickly than in case B. At the same time, the peak number of
infected individuals occurs about 10 days earlier and is larger by about a factor
of 2. However, roughly 500 more people have been infected than in B. People
recover earlier and after 90 days, there are practically no susceptible and infected
persons left.

I have also carried out a simulation halving P; (not shown) and found that
this stopped the epidemic early in its tracks. In the context of my model, this
sensitivity calls for an improvement of the manner contacts between susceptible
and infectious are modeled. Regardless, being more conscious of better hygiene
has a strong effect on the spreading of the virus.

20bviously, this point indicates the time where available health care facilities are most
likely to be overloaded.
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Figure 3.2: Temporal evolution of S, I, and R for the increased risk scenario
(solid curves). The baseline scenario is repeated from Fig. 3.1 (dashed).

This comparison clearly highlights the sensitivity of epidemic dynamics on the
infection probability. By the same token, I expect to see a similarly strong
sensitivity on the interaction distance. I have now convinced myself about the
great importance of physical distancing relative to other precautions such as
wearing gloves.

Scenario Q differs from B by removing infected individuals, with a probability of
0.2, 5 days after they have been infected. This may be judged as a rather mild
containment measure, but in view of practical difficulties to safely identify and
isolate infectious persons, perhaps not unrealistic. In this simulation, quarantine
happens from day 0. In reality, such a step would be most likely taken only after
some period of time into the epidemic, e.g. at the instant when the number of
infected persons reached a peak. Results are shown in Fig. 3.3.

The simulation ran out of infected people and stopped on day 83. In this case,
quarantine did bring their peak number down dramatically, from 1101 to 305.
A total of 2 327 susceptibles escaped infection, thanks to 1938 quarantined and
1211 removed residents. Clearly, the identify-and-isolate strategy can be very
powerful in attempts to ‘flatten the curve’.

11
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Figure 3.3: Temporal evolution of S, I, R, and () for the scenario with quar-
antine (solid curves). The baseline scenario (dashed, with () = 0) is repeated
from Fig. 3.1.
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Chapter 4

Epilogue
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Figure 4.1: Statistics about Covid-19 provided online by the Johns-Hopkins-
University on April 13, 2020.

Despite of the limitations of my simplistic approach, I felt that learning in this
way is better than solely relying on news headlines. On April 13, the pandemic
is still in an exponential growth stage (Fig. 4.1). Few active cases are seen in
China and East Asia; however, uncertainty remains whether this region is on
knife edge between recovery and recurrence. In Germany, public health officials
noted with caution that they see signs of relief, but lockdown rules will remain
in place in one way or another for months to come. These are trying times.
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On a positive note, one outcome of the pandemic might be that we will have
learned to better cope with ‘not knowing’ and nonetheless live our lives fully.
(After all, in physics we know that uncertainty is built into the very fabric of
nature.) And it is my hope that when all this passed, we question some of the
habitual patterns and aspects of our ‘way of life’ that seemed to be set in stone.

Although it goes against the grain of scientifically-oriented minds, I refrain
from tackling model issues, notably conducting ensemble simulations to add a
statistical analysis or developing less idealized human movement and contact
submodels to prevent this study from becoming a time sink.

Regardless, this transient episode kicked off by a microbe in one single infected
person might sharpen our senses of how delicately all things work together to
create the world we inhabit. Right now, we have first-hand experience that real
exponential growth does occur in nature, not in economics. At the end of the
day, we all may want to reflect on how we organize our societies, and on the true
values of well-knit social security nets, well-kept public health care systems, and
thriving scientific research communities.

Bernd Kércher
Munich, April 2020
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List of symbols used in the main text

correlated distance for random walk
autocorrelation time for random walk
average infection time
time lag for quarantine
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time

ﬂﬁa@w:o—gﬁ(&‘

domain area

infectious

domain length

initial number of infected persons
total population

initial number of immune persons
quarantined

removed (recovered, dead)
probability of infection
probability of quarantine
susceptibles

0

<

TmOZZZS e

©

pair interaction distance

t  time step
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Appendix A

Deterministic Model

The model discussed in the main text is a version of a stochastic compartmental
model. For large populations one quickly needs to resort to high performance
computing and specialized programming techniques. The model outlined next is
an example of a deterministic compartmental model. Since it treats individuals
as continuous functions, it is suitable for sufficiently large populations.

The mathematical groundwork of the deterministic SIR-model was laid out in a
series of 3 articles authored by Scottish epidemiologist Anderson G. McKendrick
and biochemist William O. Kermack that appeared in the Proceedings of the
Royal Society in 1927, 1932, and 1933. In these landmark studies, infectious
cases evolve as a function of time, ¢, and infection age 7, using infection age-
dependent transmission (S — I) rates.

In its basic form without age structure, the model consists of three non-linear
ordinary differential equations:

ds

— = —afSI A1l
o s (A1)
dl

il I —~T A2
o aST — v (A.2)
dR

_— = I M A
= 7 ; (A.3)

here, a quantifies the fraction of S that gets infected per I-person per unit
time. As shown below, it may be estimated from data taken during initial
(linear) phase of an epidemic; 7 is the removal rate. The binary S-I-term makes
the equations nonlinear; analytical solutions {S(t),I(t), R(¢)} do not exist in
closed form. However, numerical solutions for S(t) and I(t) can be obtained
using standard integration methods; for a closed population, R follows from the
conservation law R(t) = Ny — [S(¢) + 1(t)].
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This set of equations with constant rate coefficients o and -y for a closed, homo-
geneous population can only describe the evolution of simple epidemics, whereby
S(t) decreases monotonically. Tts relevance stems from the fact that it provides
basic insight into the system dynamics and reveals a threshold condition for an
epidemic to start and an estimate of the number of people ultimately affected
by an epidemic in terms of the basic reproduction number.

Multiplying « with the time a person needs to recover from the infection yields
the infection rate per I-member, z = «/7. Therefore, multiplying z with the
initial number of susceptibles, Sp = S(t = 0), gives the dimensionless basic
reproduction number, the number of individuals getting infected by
one infectious person at the point when the epidemic has not yet
spread (mathematically in the limit ¢ — 0):

Ro =250 = %SO : (A.4)

Shortly after an epidemic starts, R(t) can be ignored. Additionally, if Sy > I,
which is typically the case, S ~ Sy, so that dI/dt ~ v(Ry — 1)I. This means
that I(t) starts growing exponentially at the rate v(Ro— 1), but only if Ry > 1;
otherwise, I(t) declines and an epidemic does not occur. Since Sy > S(t), this
is the fastest growth rate of I(¢) during the epidemic simulated by this model.

Since neither a nor Ry are known, the exponential onset of I(t) can be used
to fit I(t)-data (or the result of one of my simulations for that matter) at the
onset of an epidemic to the exponent of the exponential solution of the form
1(t) = Ipexp(rt). Such a fit for r yields reasonable estimates, a ~ (r +v)/So
and Rg ~ 1+ r/v.

Ry is also important for the herd immunity, the threshold fraction of im-
mune members in a population that needs to be surpassed to prevent
an outbreak. The associated necessary condition, Ry < 1, is written in terms
of the initial number of immune persons, Ry:

1
Ro >Ny —Ip— -, (A.5)

using the conservation property Sop = N; — (Ip + Rp). Again with the approxi-
mation Iy < N; (consistent with So ~ N;) and written in terms of a fraction of
the total population, H = Ry/Ny, the threshold for herd immunity is given by
1
Hel— —. A6
- (A.6)
For Covid-19, initial estimates have been around Ry = 3, hence, H = 2/3. This
simple relationship is intuitively clear: if one infected person transmits Covid-19
to 3 others, more than 2 out of 3 people (> 66%) need to be immune to stop
spreading the virus.

In the case of measles, Ry ~ 12 — 18, hence, H ~ 0.93. This means that
more than 93% of the population must be immune to measles to eradicate
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this disease. In such cases, herd immunity can arguably only be achieved by
widespread vaccination. In case a virus already spreads, those who are not
immune benefit from vaccination of others, but can potentially carry an infection
in them, causing an outbreak to recur or unfold elsewhere. At the time I am
writing this report, it is expected that a fully tested vaccine for Covid-19 will
not be available for another year.

Using the tendency equations for S and I, a phase space solution I(S) is obtained
by solving

a1
e (A7)
I(S) = (N; — Ro) + éln (S%) ~ 5. (A.8)

The two latter equations allow to estimate the peak number of infectious per-

sons. In mathematical terms, one searches for the value of S, S, where I takes
its maximum, 7. This value is S = 1/z, giving I as:

- 1

I=(Nt—Ry) — ;(1 +1InRy). (A.9)
I(S) can also be used to estimate the fraction of the population that does not
get infected when the epidemic is over (for ¢ — o). This fraction is given by
1 — So /N, with Soo = S(teo). It follows immediately from I(S) with Ry = 0
applied at ¢ and noting that in this limit, no infectious are left (I, — 0):

1—%:%0111 (%‘;) (A.10)

A nontrivial solution S,, > 0 may be computed iteratively from this transcen-
dental relationship known as final size equation (approaching S, as the final
size of an epidemic is a characteristic of models with closed populations). It
follows that S., must be non-zero, i.e. some susceptibles never get infected,
instead the epidemic runs out of infections, a finding that is not immediately
obvious.

I examine the difference between the above deterministic and my probabilis-
tic model in Appendix B. Beyond these, other methodologies are employed by
public health officials and research scientists, such as stochastic approaches that
construct discrete time Markov chains related to equations of a deterministic
epidemic model. Epidemiologists also work with data-heavy statistical and di-
agnostic models.
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Appendix B

Probabilistic vs
deterministic approaches

Unlike the deterministic SIR model, the stochastic processes (i) spatial encoun-
ters between susceptibles and infectious and (ii) recovery or death after exposure
are modeled via Monte Carlo simulation in my probabilistic model.
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Figure B.1: SIR-solutions for the deterministic (solid curves) and probabilistic
baseline scenario (dashed). The latter is repeated from Fig. 3.1.

I compare in Fig. B.1 the deterministic solution of the epidemic model for the

baseline scenario with the probabilistic solution discussed in Ch. 3.2, whereby
the initial conditions used to compute the former are taken from the latter as de-
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scribed in Appendix A: Sy = 5471, Iy = 5;dS/dt(t=0) = —aSyly, dI/dt(t=0) =
(aSo — ¥) 1y, with a ~ (r +)/Sp and v = 1/¢,.

The general evolution of both approaches is similar. However, the solutions
diverge significantly after five days, although the initial conditions are identical.
This should not come as a surprise, for two reasons:

— in the deterministic model, o and  are constant, while in the probabilistic
model, « is computed from randomized contact processes and + is sampled
from an exponential distribution;

— the deterministic solution is uniquely determined by the initial conditions,
while each solution of the probabilistic model with randomized process
representation will be different.

The preferred way would be to compare the deterministic solution with an
ensemble mean solution of my model, whereby the ensemble consists of many
tens (> 30) of individual statistical representations of scenario B solutions.
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