The Wind Lidar Mission ADM-Aeolus

Recent Science Activities and Status of Instrument Development

Oliver Reitebuch Institut für Physik der Atmosphäre Deutsches Zentrum für Luft- und Raumfahr DLR Oberpfaffenhofen

Martin Endemann, Paul Ingmann, Herbert Nett ESA-ESTEC Noordwijk

Atmospheric Dynamics Mission ADM-Aeolus

ADM-Aeolus with single payload Atmospheric LAser Doppler INstrument

- Observations of Line-of-Sight LOS wind profiles in troposphere to lower stratosphere up to 30 km with vertical resolution from 250 m - 2 km horizontally averaged over 50 km every 200 km
- Vertical sampling with 25 range gates can be varied up to 8 times during one orbit
- High requirement on random error of HLOS

 <1 m/s (z=0-2 km, for Δz=0.5 km)
 <2 m/s (z=2-16 km, for Δz= 1 km),
 unknown bias <0.4 m/s and linearity error <0.7 %

of actual wind speed; HLOS: projection on horizontal of LOS => LOS accuracy = 0.6*HLOS

- Operating @ 355 nm with spectrometers for molecular Rayleigh and aerosol/cloud Mie backscatter
- First wind lidar and first High Spectral Resolution Lidar HSRL in space to obtain aerosol/cloud optical properties (backscatter and extinction coefficients)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

ADM-Aeolus Coverage and Data Availability

50 km observations during 6 hour period

- 3200 wind profiles per day: about factor 3 more than radiosondes
- 3 hour data availability after observation (NRT-Service) => 1 data-downlink per orbit;
 30 minutes data availability for parts of orbit (QRT-Service with late start of downlink)
- launch date late 2009 (consolidated launch date prediction in some months expected)
- mission lifetime 39 months: observations from 2010-2012
- **Overview paper about ADM-Aeolus** Stoffelen et al. 2005, Bull. Am. Met. Soc.
- and soon **ADM-Aeolus Science Report** (ESA publication SP-1311)

and soon **TELLUS special edition** about ADM-Aeolus workshop 2006

Satellit und Instrument ALADIN

Mass and Power Budgets

mass: 1100 kg dry +116-266 kg fuel power: 1.4 kW avg. (solar array 2.4 kW peak) mass instrument: 470 kg power instrument: avg. 840 W (laser 510 W) Volume: 4.3 m x 2.0 m x 1.9 m

Doppler Lidar Instrument ALADIN

Nd:YAG laser in burst mode operation (120 mJ @ 355 nm, 100 Hz) 1.5 m Cassegrain telescope Dual-Channel-Receiver with ACCD detector (Accumulation Charge Coupled Device)

Orbit

polar, sun-synchronous, dawn-dusk (6 pm LTAN),
97° inclination; height 410 km (395-425 km),
7 days orbit repeat cycle (109 orbits);
92.5 min orbit duration

Pointing and Orbit Control

GPS, Star-Tracker, Inertial Measurement Unit, Yaw steering to compensate for earth rotation

Launcher

Rockot (Russia), Dnepr (Russia) or Vega (ESA): tbd in 2008

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

Comparison of Power-Aperture Products of Space Lidars

Lidar	Lidar altitude	Pulse energy	Pulse rep. rate	F Mirror diameter	Power-aperture PAP, range-cor.	product
LITE (532 nm)	250 km	560 mJ	10 Hz	1.0 m	7.0 10 ⁻¹¹ W	
GLAS (532 nm)	600 km	35 mJ	40 Hz	0.9 m	$0.25 \ 10^{-11} \ W$	
CALIOP (532 nm)	700 km	110 mJ	20 Hz	1.0 m	$0.35 \ 10^{-11} \ W$	Easter 45
ALADIN (355 nm)	410 km	150 mJ	100 Hz	1.5 m	15.8 10 ⁻¹¹ W	Factor 45
ATLID (355 nm)	450 km	20 mJ	100 Hz	0.6 m	$0.28 \ 10^{-11} \ W$	Factor 56

adapted from A. Ansmann 2006

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

ADM-Aeolus Ground Segment

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Ground Segment - Svalbard Satellite Reception Station

Data-downlink with 5 Mbit/s with X-Band to 2.4 m antenna to Svalbard, Norway (78°15'N)

Institut für Physik der Atmosphäre

ADM-Aeolus Data Products

Product	Contents	Processor developer and location	Size in MByte/orbit
Level 0	Time ordered source packets with ALADIN measurement	MDA (Canada)	47
	& nousekeeping data	Tromsø (Norway)	
Level 1b	Geo-located, calibrated observational data	MDA (Canada)	10-15 (BUFR)
	 preliminary HLOS velocity profiles (standard atmosphere used in Rayleigh processing) 	Tromsø (Norway)	+ 22 (EE XML
	viewing geometry & scene geo-location data		Format)
Level 2a	Supplementary product	DLR-IMF	12
	Cloud profiles, coverage, cloud top heights		
	 Aerosol extinction and backscatter profiles, ground reflectance, optical depth 	Tromsø (Norway)	
Level 2b	Consolidated HLOS wind observations	ECMWF	18
	Consolidated HLOS wind profiles; temperature T and pressure p (Rayleigh-Brillouin) correction applied with ECMWF model T and p	Reading	
Level 2c	Aeolus assisted wind vector product	ECMWF	22
	Vertical wind profiles (u and v component); NWP model output after assimilation of Aeolus wind	Reading	
DLR	für Luft- und Raumfahrt e.V. Institut für Physik der Atmosphäre	LWG Meeting, Monterey, F	ebruary 5, 2008

in der Helmholtz-Gemeinschaft

Ongoing ADM-Aeolus Scientific Studies

Title	Team	
Consolidation of ADM-Aeolus Ground	DLR Germany	
Processing including L2A Products	Météo-France, KNMI, IPSL, PSol	
Development and Production of Aeolus Wind	ECMWF UK	
Data Products	Météo-France, KNMI, IPSL, DLR	
ADM-Aeolus Campaigns	DLR Germany Météo-France, KNMI, IPSL, DWD, MIM	
Optimisation of spatial and temporal sampling	KNMI Netherlands	
Tropical dynamics and equatorial waves	MISU Sweden	
Rayleigh-Brillouin Scattering Experiment	tbd	

ESA plans an Announcement of Opportunity AO for ADM-Aeolus scientific use of data for late 2008 in addition to the AO for Cal/Val

ADM-Aeolus Calibration/Validation AO

- Announcement of Opportunity AO issued by ESA for Cal/Val on October 1, 2007
- Open to PI worldwide in order to get access to ADM-Aeolus data; but no funds provided by ESA (BYOF)
- AO was open until December 15, 2007
- 15 proposals received with Pl's from Canada, China, France, Germany, Japan, Netherlands, Norway, and USA
- Review by ESA and external experts until end March 2008
- Notification of PI's until end March 2008
- ESA plans to organize an AO user workshop in late 2008

Principle of spectrometer für molecular signal

Fig. U. Paffrath

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

DLR

Atmospheric LAser Doppler INstrument **ALADIN**

- Direct-Detection Doppler Lidar at 355 nm with 2 spectrometers to analyse backscatter signal from molecules (Rayleigh) and aerosol/clouds (Mie)
- Double edge technique for spectrally broad molecular return, e.g. NASA GLOW instrument (Gentry et al. 2000), but sequential implementation
- Fizeau spectrometer for spectrally small aerosol/cloud return
- Uses Accumulation CCD as detector => high quantum efficiency >0.8 and quasi-photon counting mode
- ALADIN is a High-Spectral Resolution Lidar HSRL with 3 channels: 2 for molecular signal, 1 for aerosol/cloud signal => retrieval of profiles of aerosol/cloud optical properties possible

ALADIN Optical Layout

Transmitter laser assembly:

Reference Laser Head with stabilized tunable MISER lasers seeding the Power Laser Head with low power oscillator, two amplifiers and tripling stage two redundant laser assemblies in ALADIN

Mie receiver:

Fizeau interferometer, thermally stable, fringe imaged on single accumulation CCD

Telescope:

1.5 m diameter, Cassegrain, SiC lightweight structure, afocal, thermally focused

Transmit/receive optics:

polarizer as T/R switch, Laser Chopper mechanism, 1 focus as field stop, interference filter and prism for broad-band rejection of solar background

Rayleigh receiver:

Double edge Fabry-Perot interferometer, sequentially illuminated, temperature tunable Outputs focused on single accumulation CCD

Institut für Physik der Atmosphäre

Aeolus Structure Model Acoustic and Shaker Test 2005

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

ALADIN OSTM and Laser Radiator 2005

Optical Structure Thermal Model (OSTM), Power Laser Head (PLH), Reference Laser Head (RLH) Optical Bench Assembly (OBA)

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der At

Satellite Bus

Satellite bus during integration at Astrium, Germany and was finalised at Astrium Stevenage, UK

Mechanical and electrical integration is complete, including AOCS, CESS, GPS, IMU

Intermediate On-Board Software Version delivered in December 2007

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Telescope

1.5 m afocal Cassegrain SiC Telescope at Astrium Toulouse, France mass 75 kg, thermal refocusing, total wavefront error is below 300 nm, magnification 41.67, secondary mirror Ø 46 mm

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

Transmit-Receive Optic

Transmit-Receive Optics from Kayser-Threde, Germany including transmit-path optic, calibration path optic, receive path optic with background filter (equivalent bandwidth 1nm, T=0.8), Laser Chopper Mechanism, Field Stop and polarizing optics

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

Optical Receiver - Mie and Rayleigh Spectrometer

Mie and Rayleigh-Spectrometer from Contraves (Switzerland), now Oerlikon Space

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

Optical Receiver - Integration

Integration of the Optical Bench Assembly OBA at Astrium-Toulouse finalized Optical, electrical and performance characterisation will be performed

Institut für Physik der Atmosphäre

Accumulation CCD Detector

Detector Unit with Accumulation CCD from e2V (UK)

ACCD Image Zone is 16*16 pixels; memory zone has 25 rows => thus 25 range gates quantum efficiency 0.85, quasi-photon counting due to low read-out noise because of on-chip accumulation of charges ACCD cooled to -30°C via thermo-electric coolers

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

Power and Reference Laser Head

Power Laser Head from Galileo Avionica, Italy 1 Engineering Qualification Model built; 1 Flight Model built, a total of 3 Flight Models will be built 480 x 350 x 180 mm, 27 kg total laser mass including electronics is 51.5 kg (without harness)

Reference Laser Head from TESAT, Germany 3 Flight Models built, tested and delivered 150 mm length, 2.1 kg

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

Laser Transmitter - Optical Layout and Specifications

Specifications

- 120 mJ at 355 nm with 100 Hz, 30 ns pulse length
- burst mode operation (5 s warm-up, 7 s on,
- 12 s off for power amplifiers, not master oscillator)
- 4 MHz (UV) rms frequency jitter
- tunability over 11 GHz for calibration
- output beam: Ø 7.5 mm with 400 µrad
- conductively cooled via a cold plate

Laser Diodes

- Flight models from Quantel Laser Diodes all manufactered (108 stacks total, 48 stacks needed), tested and qualified (6 month test):
- Life-testing of diodes continuous up to 2 years

Laser Induced Damage LID

 All optics qualified for LID; tests up to 10⁴ shots and then extrapolation up to 2-3*10⁹ pulses (39 months)

Laser Induced Contamination LIC

- LIC due to outgassing of organic components
- bake-out and purging with air until launch
- 6 month life test of 3rd laser in vacuum planned

Laser Optic Qualification at DLR Stuttgart

Microscopic image of damage on laser optic

photo and material courtesy Wolfgang Riede, DLR Stuttgart

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

ALADIN Power laser head

 more than 70 optical components and about 20-30 unique combinations of substrate and coating
 very compact design => high fluences up to 25 J/cm², most IR optics 5-15 J/cm², most UV optics 2-6 J/cm²
 wavelengths 1064 nm, 532 nm, and 355 nm (UV); long pulse lengths of 20-30 ns

vacuum operation

Laser Induced Damage Threshold LIDT

• LIDT in air with S-on-1 Test with S = 10^4 shots; tests done with shorter pulse lengths of 3-4 ns => scaling law

- Tests of degradation of LIDT in vacuum => lower LIDT
- Identification of coatings with high vacuum LIDT
- Testing of all coatings used in ALADIN
- Extended LIDT test over Million shots at ESA-ESTEC

Laser Induced Contamination LIC

- LIC due to outgassing of organic components and molecular contamination
- Contaminants accumulate on laser-irradiated optics
- Test campaign in vacuum with 1064 nm and 355 nm, different temperatures and up to 10⁷ shots; on-line monitoring of deposit built-up with fluorescence imaging
 Further tests of LIC at ESA-ESTEC

Institut für Physik der Atmosphäre

Laser Transmitter - Flight Model 1

Power Laser Head PLH upper optical bench (without lower optical bench mounted) with Master Oscillator, Pre-Amplifier and Power Amplifier

Institut für Physik der Atmosphäre

Laser Transmitter - Flight Model 1

Power Laser Head Lower Optical Bench with Isolators and Higher Harmonic Generation Section (LBO crystals)

Institut für Physik der Atmosphäre

Thermal-Vacuum Test of FM1 laser

Flight Model FM1 Laser entering Thermal-Vacuum Test at Galileo Avionica Florence in January 2008

6 month life-testing in vacuum of laser FM3 is planned

Institut für Physik der Atmosphäre

Atmospheric Dynamics Mission ADM-Aeolus Summary and Conclusions

- Satellite bus mechanical and electrical integration completed
- Optical receiver manufactured and integrated including telescope, spectrometers, and ACCD detectors
- Laser Transmitter Flight Model 1 manufactured and thermal-vacuum testing ongoing
- All laser diodes manufactured and qualified
- ESA call for cal/val proposals closed and proposals under review
- Next major milestone will be the thermalvacuum test of the laser => consolidated launch date in some months expected
- ESA call for science use of ADM-Aeolus data planned for late 2008

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

ADM-Aeolus Considerations for Operational Follow-on Missions

1 day global coverage for 1 spacecraft

1 day European Coverage for 2 spacecrafts Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Objective of ADM-Aeolus follow-on missions is to achieve denser horizontal coverage and/or sensing of 2 wind components by 2 to 3 operational satellites in space (PIEW study from KNMI)

 EUMETSAT SWG/AEG have recognized potential of wind lidar within post-EPS

- Temporal gap between end of ADM-Aeolus (around 2012) and post-EPS (after 2018)
- Recommendation of ADM-Aeolus Mission Advisory Group during its October 2007 meeting: "We urge these two agencies to explore the possibility of collaborating also toward developing their joint observing capabilities to include the critical missing vertically resolved wind observations."
- November 2007: Kick-off for (small) study on ADM-Follow-on Missions with focus on new laser concepts by Astrium Germany funded by DLR

LIDAR Instruments for Earth Observation Missions

