Significant Meteorological Factors in an Airport Design

Tugce Eser, Elcin Tan, and S. Sibel Mentes

Istanbul Technical University, Department of Meteorological Engineering
Parameters to be discussed in this presentation:
1. Crosswind
2. Parallel Runways
3. Wind Turbines
4. Fogginess
Purpose of Thesis

Several factors in aerodrome design, such as runway orientation, runway length, wake turbulence, visibility, and environmental issues are closely related with meteorology. In this study, we indicate the importance of meteorology in aviation, especially in airport design, rather than forecasting the weather for pilots and air traffic controllers. Our goal is also to emphasize the importance of accurate warning preparation about severe weather conditions. We should be aware that a minor mistake could cause hazardous situations, which may result in death or damage financially. Crosswind component, fogginess, wind distribution, environmental management, obstacles, and winter conditions should be analyzed before designing a new airport. For instance, for the third airport to be constructed in Istanbul, crosswind analysis requires an atmospheric model study, since there is no observation available for the airport location. In addition, all the observational data obtained from the nearest meteorological stations should also be examined in detail. Moreover, Runway Visual Range (RVR) data show that especially new CAT III operation is very requisite for Esenboga Airport. Esenboga Airport has more problems with fogginess and visual range than other airports in Turkey. However, CAT III operations are not only about visual range but they are also related with the traffic density. In order to prevent delays due to meteorological conditions, the certification for CAT III operations is crucial for an airport in any case. For the third airport of Istanbul, the existence of CAT operations is important due to the traffic density problem. If potential extreme weather conditions occur, the traffic would need to be directed to an alternative airport, and other airports in Istanbul need to be prepared accordingly for these extreme weather conditions. Finally, ICAO standards in parallel
The more important factors for runway orientation are (ICAO, 2006);

- Weather, particularly the wind distribution, and the occurrence of fogs;
- Topography of the aerodromes surroundings;
- Airplane performance;
- Environmental considerations, particularly noise;
- Type and amount of air traffic.
Wind Component

Crosswind Component

Runway

Wind vector

Aircraft Velocity Vector

Resulting Aircraft Ground Speed Vector

\[w_c = w \sin(\gamma) \]

\[w_h = w \cos(\gamma) \]
The usability factor of the aerodrome is not less than 95 per cent. However, the prevailing wind and crosswind conditions are not allowing to provide the percentage, the crosswind runway is required (ICAO, 2009).

The data of wind speed and direction, which used for the calculation of the usability factor, should be as long a period as possible, preferably of not less than five years (ICAO, 2009).

- More performance → bigger CC
- Otherwise, airplane can not land!
- So, the crosswind runway is important.
- Cause the closing runway
Crosswind Landing: The landing technique with the crosswind conditions that is not above the maximum crosswind demonstrated of the aeroplane.
Ataturk Airport

SpdAve=9 SpdStd=5 DirAve=10 Calm= 4.1% Nwind=93500

Frequency circles every 13%. Mean speed indicated.
Investigation Report (BFU, 2010);
Identification
Date: 1 March 2008
Location: Hamburg
Type of Aircraft: Commercial Air Transport
Manufacturer / Model: Airbus / A320-211
Source of Information: Investigation by BFU

TAF EDDH 010900Z 011019 28025G45KT 9999 SCT015 BKN025 TEMPO 1019 3000 SHRAGS BKN008CB TEMPO 1117 29030G55KT=
METAR EDDH 011220Z 29028G48KT 9000 –SHRA FEW011 BKN014 07/05 Q0984 TEMPO 29035G55KT 4000 SHRA BKN008=

the values documented in the Chapter Operating Limitations of OM/B A319/A320/A321, and given as "maximum crosswind demonstrated for landing 33 knots gusting up to 38 knots."
For instrument approaches, besides wake effect problem, ILS and MLS procedures and the possibility of wrong runway establishing should be considered. Therefore the separation of aircrafts is important for safety.

Where parallel non-instrument runways are intended for simultaneous use, the minimum distance between their centre lines should be (ICAO, 2009):

- 210 m where the higher code number is 3 or 4;
- 150 m where the higher code number is 2;
- and 120 m where the higher code number is 1.

Where parallel instrument runways are intended for simultaneous the minimum distance between their centre lines should be (ICAO, 2009):

- 1 035 m for independent parallel approaches;
- 915 m for dependent parallel approaches;
- 760 m for independent parallel departures;
- 760 m for segregated parallel operations;
There are two runway in Ankara-Esenboğa Airport, which is 3750 m long. Because the distance of these runways is 290 m, they are not used together.
Minimum distance between runways and wind turbines is defined 80 km for Canada and 30 km for England (Tronik, 2012). However, these rules are not certain.
The risks of the wind turbines near the airport are not just wake effect problem but also the effects on radar. Wind turbines cause radar clutter that is very important for air traffic or create ghost images.

A 1.5 MW wind turbine lead to visual pollution that is 10 times of a Boeing 747’s.

This radar clutter is unpredictable because the wind turbines’ direction and speed are changing regularly.
Examples:

(Tronik, 2012)

<table>
<thead>
<tr>
<th>Airports</th>
<th>Distance from wind turbines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aberdeen Airport</td>
<td>7 km</td>
</tr>
<tr>
<td>Newcastle Airport</td>
<td>19 km</td>
</tr>
<tr>
<td>Cardiff Airport</td>
<td>20 km</td>
</tr>
<tr>
<td>Amsterdam Airport</td>
<td>10 km</td>
</tr>
<tr>
<td>Tyler Minnesota Airport</td>
<td>1 km</td>
</tr>
</tbody>
</table>
Flying in the clouds is like the flight of a blind bird. Mountains, other airplanes, and runway will be invisible.
Instrument Landing System (ILS)

ILS is an instrument approach system that provides safety under some hard meteorological conditions (IMC (Instrument Meteorological Conditions)). In simple terms, ILS is formed to main guidance

- Vertical guidance (glide slope)
- And horizontal guidance (localizer)
What is Low Visibility Operations?

Low Visibility Operations (LVO) is the rules about landing, take off and taxi systems and categories at very low visibility conditions when the weather conditions do not permit normal operations. Authorisation in the light of these rules, license by the country’s own discipline of Civil Aviation. Essential criteria have to be completed by;

The airplane,
The airdrome (or the part of the airdrome),
The flight crew and,
The airline
These rules separate categories according to two weather conditions, the limits of Decision Height (DH) and Runway Visibility Range (RVR).

<table>
<thead>
<tr>
<th>Cat</th>
<th>ICAO</th>
<th>FAA</th>
<th>JAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>100ft ≤ DH < 200ft</td>
<td>100ft ≤ DH < 200ft</td>
<td>100ft ≤ DH < 200ft</td>
</tr>
<tr>
<td></td>
<td>350m ≤ RVR ≤ 1200ft</td>
<td>350m ≤ RVR < 800m</td>
<td>300m ≤ RVR ≤ 1000ft</td>
</tr>
<tr>
<td>III A</td>
<td>No DH or DH < 100ft</td>
<td>No DH or DH < 100ft</td>
<td>DH < 100ft</td>
</tr>
<tr>
<td></td>
<td>200m ≤ RVR ≤ 700ft</td>
<td>200m ≤ RVR ≤ 700ft</td>
<td>200m ≤ RVR ≤ 700ft</td>
</tr>
<tr>
<td>III B</td>
<td>No DH or DH < 60ft</td>
<td>No DH or DH < 60ft</td>
<td>No DH or DH < 50ft</td>
</tr>
<tr>
<td></td>
<td>50m ≤ RVR < 200m</td>
<td>50m ≤ RVR < 200m</td>
<td>75m ≤ RVR < 200m</td>
</tr>
<tr>
<td></td>
<td>150ft ≤ RVR < 700ft</td>
<td>150ft ≤ RVR < 700ft</td>
<td>250ft ≤ RVR < 700ft</td>
</tr>
<tr>
<td>III C</td>
<td>No DH</td>
<td>No DH</td>
<td>No DH</td>
</tr>
<tr>
<td></td>
<td>No RVR limitation</td>
<td>No RVR limitation</td>
<td>No RVR limitation</td>
</tr>
</tbody>
</table>

Runway Visual Range (RVR) is the horizontal distance that pilot (on the Center Line of the runway) could see the runway visual references. This visibility concept measures with transmissometers that have been set up 3 points of the runway.

Decision Height (DH) is the minimum altitude that pilot could decide for “Go Around”. If pilot cannot see the visual references of the runway, He / she won’t continue for landing.
DH CONCEPT

GO-AROUND*

Visual segment

Runway elevation

* Unless adequate visual references had been established
According to DMI 8 years (2004-2012) fogginess data;
Results; Specially for Ankara Esenboğa Airport Figure has greater maximum values in winter months. However in İstanbul Ataturk Airport looks like have not a fogginess problem. Maybe, with these charts, we can say that the CAT III operations are not necessary, nevertheless, fogginess is not enough for making decision about CATs. We have to look at the values of RVR.
Here is some estimated graphs for CAT limitations according to RVR values;
(Using 2012 METAR informations)

LTAC Ankara- Esenboga Airport
LTFJ İstanbul Sabiha Gökçen Airport

![Bar chart showing the number of observations for different months.
- CAT II RVR 550≤350
- CAT III RVR<350

Months: January, February, March, April, May, June, July, August, September, October, November, December.

Number of Observations:
- January: 1 (CAT II), 1 (CAT III)
- February: 6 (CAT II), 4 (CAT III)
- March: 4 (CAT II), 2 (CAT III)
- April: 2 (CAT II), 2 (CAT III)
- May: 1 (CAT II), 1 (CAT III)
- June: 1 (CAT II), 1 (CAT III)
- July: 3 (CAT II), 2 (CAT III)
- August: 5 (CAT II), 5 (CAT III)
- September: 3 (CAT II), 3 (CAT III)
- October: 2 (CAT II), 2 (CAT III)
- November: 4 (CAT II), 4 (CAT III)
- December: 2 (CAT II), 2 (CAT III)
Pilot region Istanbul
Air Noise Lden
Grid Noise Map 4 m above ground
Annoyance analysis

Area statistics Lden in dB(A)

<table>
<thead>
<tr>
<th>Lden Value</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 65</td>
<td>Red</td>
</tr>
<tr>
<td>> 55</td>
<td>Pink</td>
</tr>
<tr>
<td>> 75</td>
<td>Orange</td>
</tr>
</tbody>
</table>

Signs and symbols:
- Black: Main building
- Gray: Auxiliary building
- Blue: School
- Green: Hospital

Length Scale 1:30000

Istanbul Metropolitan Municipality
Night Operations noise map for LTBA

Pilot region Istanbul
Air Noise Ln
Grid Noise Map 4 m above ground
Annoyance analysis

Area statistics Ln in dB(A)

- > 45
- 45
- 55
- 65
- 75

Signs and symbols
- Main building
- Auxiliary building
- School
- Hospital

Length Scale 1:30000

Metropolitan Municipality Istanbul
As a result,

- closeness between city centers and airports create more noise problems day by day due to the development of cities around the airports.
- This closeness does not create only noise complains but also other organizational problems, such as due to this problem, the runway 05 in Atatürk Airport cannot be extended. Therefore, for the third airport in Istanbul, noise control issue should be considered in the renewal plan of the airport and therefore the development of the city around the airport should be limited with respect to their maximum elongation and their closeness.
Planning for next works;

*calculating the usability factor for LTBA, LTFJ with crosswind component values and discussing if today designing is true.

*winter conditions on runway

*bird strike

*other runway operations like circle to land and MLS

*Other meteorological effects on aviation not about only designing.
REFERENCES

http://www.skybrary.aero/bookshelf/books/1258.pdf

Camalan, İbrahim. JAA ATPL Education-Meteorology.
http://en.calameo.com/read/001589162368e427c3bba

DMİ: Ankara

DGCA. Green Airport Project.

http://www.docstoc.com/docs/835339/Overview-of-AC-Airport-Obstacle-Analysis

http://www.icao.int/icao/env/ae.htm

Trani, Antonio A. Airport Runway Location and Orientation. Virginia Tech.

Tronik, Erik (2012). Wind Turbines and Effects on Radars.
http://seyrusefergunce.blogspot.com/2012/06/rüzgar-turbini-ve-radarlara-etkileri.html