

Organisation Scientifique et Technique Internationale du Vol`a Voile Meteorological Panel Meeting, 6-7 February 2015





## A Dream of Menkind: Spread your arms, run, and fly!



Lilienthal, Derwitzer Apparat 1891



Ruppert, Archaeopteryx 2011

#### 1999 - 2003

Development, Construction and Testing of the Conzept-Demonstrator at the ZHAW in Winterthur.

#### 2006 - 2009

Development and Testing of the Series-Version by Ruppert Composite in cooperation with ZHAW and Industry-Partners.

#### 2010 - 2015

Delivery to customers, small series production, intensive flying, flight-school, Cross Country Flights
Electric Motorised Version







### Airplane data

- Wing Span13.6 m
- Wing Area 12.8 m²
- Length 5.7 m
- Flaps -7° to +70°
- > Speed 30 ...130 km/h
- Minimum Sink 0.5 m/s
- Best Aspect Ratio 28
- Empty Weight 54 kg (Basic Version, includes Parachute)
- Cockpit-Cladding 6.7 kg
- Recovery Parachute System 5.5 kg
- Max. Wing Load 12.8 kg/ m²
- Safe Loads: Manoeuvre +4 g / -2 g, Gust +5.1 g / -3.1 g



## **Extraordinairy Features**

- ✓ Minimum Weight (Empty Weight starting with 54 kg)
- ✓ Very slow Minimum Speed (30 km/h)
- ✓ Excellent Controllability in all Configurations
- ✓ Adabtibility by Wing with Flaps
- ✓ Simple to fly good stall behaviour
- ✓ Slow and precise thermaling, minimum circle radius at 45° bank: 15 m



#### **Versions**

# Now also available with electric propulsion

«Standard» – open



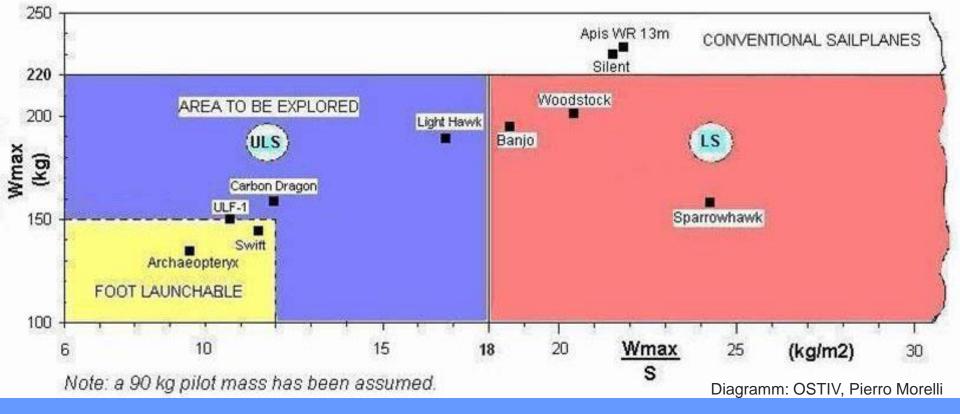
«Race» - with full cover



## **Technology**

- > Thin walled laminates
- New technology: Wing integral Shell-/Ribs in Carbon
- Integral design for fuselage components
- > Cockpit in differential construction out of integral components
- Cockpit cladding separate (Aramit)
- Completely manufactured in precise CNC-milled moulds
- → manufactured like a high performance sail plane




#### **Launch Methods**

- √ Foot launch
- ✓ Bungee launch (without help of others)
- ✓ Trike-Tow
- ✓ Aero Tow (max. 100 km/h)
- ✓ Car Tow
- ✓ Winch launch (small winch)
- ✓ Self launch with electric engine

## **Landing characteristics**

- ✓ Glide angle control with flaps
- ✓ Slow short final glide
- ✓ Precise landing on small area
- ✓ Touch down on wheel
- ✓ Possible to land with feet





#### Classification

Certification: Hang-glider (Germany UL-Sailplane)

Pilot licence: Basic training in double seater sailplane

recommended

Sportive Classification: Hang-glider Class 2
Sailplane Class Microlift

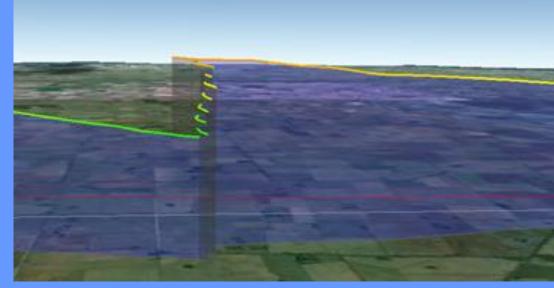


## **Pilot Training**

- 1. Basic Training in Sailplane
- 2. Ground instruction Archaeopteryx
- 3. Training flights with the Archaeopteryx after check flight with a flight instructor.

  First Archaeopteryx flights with car launch
- 4. Flight examen, Licence (if recommended)
- 5. Instruction into alternative launch methods




## Flying with the Microlift-Glider ...



- Is comfortable and relaxing.
  - Even with low cloud base and little operation hight
- Good climb possibilities even in low altitude
- Slow hang soaring even at micro ridges
- Wave flights possible if wind speeds are below 60 km/h



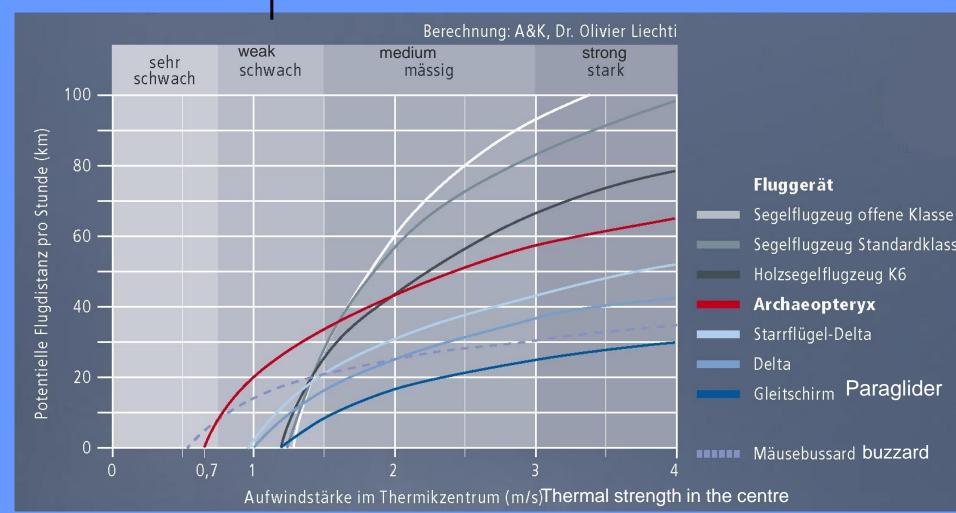
## The original feeling...



... of flying is especially sensed by light and slow flying:
to use micro-lifts, slow hangsoaring with relish,
Take-off from a hill or an airflield and stressless flying even in lo

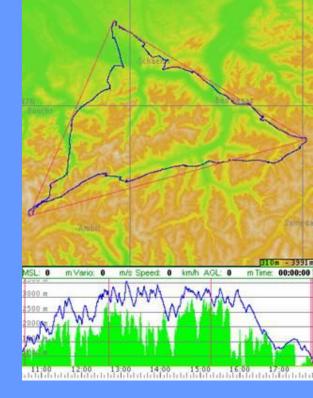
Take-off from a hill or an airflield and stressless flying even in low altitude.

Circling up in a narrow screw.


Cross country flying – of course!

A certain sensitivity to wind belongs to extrem light sailplanes.




Climb performance Minimum sink like a modern sailplane – Circling like a paraglider or bird

Gaining hight starting from 0.7 m/s upwind in the centre.



## **Cross country performance**

Classical cross country flights of the Archaeopteryx in thermals.



Can use early morning late afternoon thermals

Closed tasks (out and return, triangle, ...) up to:

| Weak day   | Medium day   | Good day     | Very good day |
|------------|--------------|--------------|---------------|
| bis 100 km | 100 – 200 km | 200 – 300 km | 300 – 400+ km |



## Safety aspects

- Half the speed of a "normal" glider
- One forth of the mass
- Only 1/16 of the kinetic energy
- More recognition- and reaction time for the pilot
- Simple landing procedure to small fields
- Parachute recovery system



## Recovery system



Specially developed, and tested 5.5 kg light Recovery system.

68 m<sup>2</sup> Parachute newest technology for lowest sink rate.

Small rocket edjection works in low altitude.

Pilot harness linked to parachute all the time.



## **Keep seated!**

Emergency situation in 2010. Non allowed acrobatics at a flight exebition in France. Structur overloading due to overspeed after a first loop and pulling too much. The wing held 8g!

The pilot released the parachute 3 secnds after the wing rupture. After additional 3 sec. the sink rate with parachute stabalized at 4 m/s.



The pilot was not injured (and ordered a new Archaeopteryx).

#### **Pilot comments**

#### Hang-glider customer

«The first winter showed us the tremendous opportunities with flight durations from 3 - 4h. Realy new experiences. In Spring our expectations were more than satisfied by distance flights up to 550 km and FAI triangles up to 330 km.»

#### Sail plane customer

«genious light, can land everywhere, lifts like a feather, bungee launch is fantastic, easy to fly, aero-tow works also well, ...»

#### **Paraglider customer**

«It's fun! Much easier than expected. Using foot-launch to fly arround the Mt.Blanc, nothing climbs better...»

#### **Testpilot**

«The Archaeopteryx opens new horizons of soaring.»





