Literaturauswahl im Zusammenhang mit AIRSPACE

Abshire, J.B. et al., “Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar,” Remote Sens., 6, 443-469 (2014).

Alexe, M., et al., “Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY,” Atmos. Chem. Phys., 15, 113-133 (2015).

Amediek A., Büdenbender H.C., Ehret G., Fix A., Gerbig C., Kiemle C., Quatrevalet M. and Wirth M., “First Airborne Lidar Measurements of Methane and Carbon Dioxide Applying the MERLIN Demonstrator CHARM-F,” EGU General Assembly 2016, 17.-22. Apr. 2016, Vienna, Austria (2016).

Ballantyne, A.P. et al., “Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty,” Biogeosciences, 12, 2565-2584 (2015).

Bergamaschi, P. et al., “Top-down estimates of European CH4 and N2O emissions based on four different inverse models,” Atmos. Chem. Phys., 15, 715–736 (2015).

Bovensmann, K., M. Buchwitz, J. P. Burrows, M. Reuter, T. Krings, K. Gerilowski, O. Schneising, J. Heymann, A. Tretner, and J. Erzinger: A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications, Atmos. Meas. Tech., 3, 781–811 (2010), doi:10.5194/amt-3-781-2010.

Buchwitz, M., Schneising, O., Reuter, M., Heymann, J., Krautwurst, S., Bovensmann, H., Burrows, J. P., Boesch, H., Parker, R. J., Somkuti, P., Detmers, R. G., Hasekamp, O. P., Aben, I., Butz, A., Frankenberg, C., Turner, A. J., Satellite-derived methane hotspot emission estimates using a fast data-driven method, Amos. Chem. Phys., 17, 5751-5774, doi:10.5194/acp-17-5751-2017, 2017.

Butz, A.; Guerlet, S.; Hasekamp, O.; Schepers, D.; Galli, A.; Aben, I.; Frankenberg, C.; Hartmann, J.M.; Tran, H.; Kuze, A., et al. , “Toward accurate CO2 and CH4 observations from GOSAT,” Geophys Res Lett, 38, L14812., doi: 10.1029/2011gl047888 (2011).

Butz A., A. Galli, O. Hasekamp, J. Landgraf, P. Tol, I. Aben, “TROPOMI aboard Sentinel-5 Precursor: Prospective performance of CH4 retrievals for aerosol and cirrus loaded atmospheres,” Remote Sensing of Environment, 120, 267-276 (2012).

Butz, A., Dinger, A. S., Bobrowski, N., Kostinek, J., Fieber, L., Fischerkeller, C., Giuffrida, G. B., Hase, F., Klappenbach, F., Kuhn, J., Lübcke, P., Tirpitz, L., and Tu, Q., “Remote sensing of volcanic CO2, HF, HCl, SO2, and BrO in the downwind plume of Mt. Etna,“  Atmos. Meas. Tech., 10, 1-14 (2017).

Cambaliza M.O.L., et al. “Quantification and source apportionment of the methane emission flux from the city of Indianapolis,” Elem. Sci. Anth. 3: 000037 (2015).

Canadell J.G., P. Ciais, K. Gurney, C. Le Quéré, S. Piao, M. R. Raupach, and C. L. Sabine, “An International Effort to Quantify Regional Carbon Fluxes,” Eos 92, 10, 81-82 (2011).

Ciais, P, et al., “Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system,” Biogeosciences, 11, 3547-3602 (2014).

Cressot, C.; Chevallier, F.; Bousquet, P.; Crevoisier, C.; Dlugokencky, E.J.; Fortems-Cheiney, A.; Frankenberg, C.; Parker, R.; Pison, I.; Scheepmaker, R.A., et al., “On the consistency between global and regional methane emissions inferred from SCIAMACHY,TANSO-FTS, IASI  and surface measurements,” Atmos. Chem. Phys., 14, 577-592 (2014).

Dlugokencky, E.J., E. G. Nisbet, R. Fisher, and D. Lowry, “Global atmospheric methane: budget, changes and dangers,” Phil. Trans. R. Soc. A 369 (1943) 2058-2072; (2011).

Dobler, J. T. et al., "Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar," Appl. Opt. 52, 2874-2892 (2013).

Ehret, G., A. Amediek, C. Kiemle, M. Wirth, A. Fix, and S. Houweling,: Space-borne remote sensing of the greenhouse gases CO2, CH4, N2O by integrated path differential absorption lidar: a sensitivity analysis, Appl. Phys. B90, 593–608 (2008).

Etiope G., “Geological Methane, “ in Methane and Climate Change, ed. D. Reay, P. Smith and A. van Amstel, Earthscan, London 2010, 272p. ISBN: 9781844078233.

Fix, A., A. Amediek, C. Büdenbender, G. Ehret, M. Quatrevalet, M. Wirth, J. Löhring, R. Kasemann, J. Klein, D. Hoffmann, and V. Klein: Development and First Results of A New Near-ir Airborne Greenhouse Gas Lidar, in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATh1A.2, 2015

Frey, M., Hase, F., Blumenstock, T., Groß, J., Kiel, M., Mengistu Tsidu, G., Schäfer, K., Sha, M. K., and Orphal, J.,“Calibration and instrumental line shape characterization of a set of portable FTIR spectrometers for detecting greenhouse gas emissions, Atmos. Meas. Tech., 8, 3047-3057, (2015) doi:10.5194/amt-8-3047-2015.

Frey, M., Hase, F., Blumenstock, T., Groß, J., Kiel, M., Mengistu Tsidu, G., Schäfer, K., Sha, M. K., and Orphal, J., “Calibration and instrumental line shape characterization of a set of portable FTIR spectrometers for detecting greenhouse gas emissions,” Atmos. Meas. Tech., 8, 3047-3057, (2015) doi:10.5194/amt-8-3047-2015.

Geibel, M. C., Messerschmidt, J., Gerbig, C., Blumenstock, T., Chen, H., Hase, F., Kolle, O., Lavrič, J. V., Notholt, J., Palm, M., Rettinger, M., Schmidt, M., Sussmann, R., Warneke, T., and Feist, D. G., “Calibration of column-averaged CH4 over European TCCON FTS sites with airborne in-situ measurements,” Atmos. Chem. Phys., 12, 8763-8775 (2012).

Gerilowski, K., A. Tretner, T. Krings, M. Buchwitz, P. P. Bertagnolio, F. Belemezov, J. Erzinger, J. P. Burrows, and H. Bovensmann: MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observa-tions from aircraft: instrument description and performance analysis, Atmos. Meas. Tech., 4, 215-243 (2011), doi:10.5194/amt-4-215-2011.

Gerilowski, K., Krautwurst, S., Kolyer, R., Thompson, D. R., Jonsson, H., Krings, T., Horstjann, M., Leifer, I., Eastwood, M., Green, R. O., Vigil, S., Schuettemeyer, D., Fladeland, M., Burrows, J., and Bovensmann, H.: Remote sensing of large-scale methane emission sources with the Methane Airborne MAPper (MAMAP) instrument over Kern River and Kern Front oil fields and validation through airborne in-situ measurements – initial results from COMEX, in: AGU Fall Meeting, San Francisco, CA,

Hase, F., Hannigan, J., Coffey, M., Goldman, A., Höpfner, M., Jones, N., Rinsland, C., and Wood, S.: Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements, J. Quant. Spectrosc. Radiat. Transfer, 87, 25 – 52, doi:http://dx.doi.org/10.1016/j.jqsrt.2003.12.008, (2004)

Hase, F., Frey, M., Blumenstock, T., Groß, J., Kiel, M., Kohlhepp, R., Mengistu Tsidu, G., Schäfer, K., Sha, M. K., and Orphal, J.: Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin, Atmos. Meas. Tech., 8, 3059-3068, doi:10.5194/amt-8-3059-2015 (2015).

Heimann, M., ”How Stable Is the Methane Cycle?” Science, 327, 1211–1212 (2010).

Gurney, K.R., et al. “Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models,” Nature 415, 626-630 (2002).

Hofmann, C., Kerkweg, A., Wernli, H., & Jöckel, P., “The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 3: Meteorological evaluation of the on-line coupled system,” Geoscientific Model Development, 5, 129–147, doi: 10.5194/gmd-5-129-2012 (2012).

Houweling, S., et al., “A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements, Atmos. Chem. Phys., 14, 3991-4012 (2014)doi:10.5194/acp-14-3991-2014.

IPCC, “Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change” [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. (2013)

Kameyama S., et al. “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing," Opt. Lett. 34, 1513-1515 (2009).

Karion, A., et al., “Methane emissions estimate from airborne measurements over a western United States natural gas field,” Geophys. Res. Lett., 40, 4393–4397 (2013).

Kerkweg, A. & Jöckel, P., “The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 2: On-line coupling with the Multi-Model-Driver (MMD),” Geoscientific Model Development, 5, 111–128, doi: 10.5194/gmd-5-111-2012 (2012).

Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L., et al., “Three decades of global methane sources and sinks,” Nat Geosci, 6, 813-823 (2013).

Klappenbach, F., Bertleff, M., Kostinek, J., Hase, F., Blumenstock, T., Agusti-Panareda, A., Razinger, M., and Butz, A., “Accurate mobile remote sensing of XCO2 and XCH4 latitudinal transects from aboard a research vessel,” Atmos. Meas. Tech., 8, 5023-5038, doi:10.5194/amt-8-5023-2015, 201

Kort, E. A., et al., “Four corners: The largest US methane anomaly viewed from space,” Geophys. Res. Lett., 41, 6898–6903, (2014) doi:10.1002/ 2014GL061503.

Krautwurst, S., Gerilowski, K., Jonsson, H. H., Thompson, D. R., Kolyer, R. W., Thorpe, A. K., Horstjann, M., Eastwood, M., Leifer, I., Vigil, S., Krings, T., Borchardt, J., Buchwitz, M., Fladeland, M. M., Burrows, J. P., and Bovensmann, H.: Methane emissions from a Californian landfill, determined from airborne remote sensing and in-situ measurements, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-391,

Krings, T., K. Gerilowski, M. Buchwitz, M. Reuter, A. Tretner, J. Erzinger, D. Heinze, U. Pflüger, J. P. Burrows, and H. Bovensmann: MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates, Atmos. Meas. Tech., 4, 1735-1758 (2011), doi:10.5194/amt-4-1735-2011.

Krings,T., K. Gerilowski, M. Buchwitz, J. Hartmann, T. Sachs, J. Erzinger, J. P. Burrows, H. Bovensmann, Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data, Atmos. Meas. Tech., 6, 151-166 (2013).

Krings, T., Neininger, B., Gerilowski, K., Krautwurst, S., Buchwitz, M., Burrows, J. P., Lindemann, C., Ruhtz, T., Schüttemeyer, D., and Bovensmann, H., “Airborne remote sensing and in-situ measurements of atmospheric CO2 to quantify point source emissions,” Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-362, in review, 2016.

Kuze, A., H. Suto, M. Nakajima, and T. Hamazaki, “Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring,” Appl. Opt., 48, 6716-6733 (2009).

Le Quéré, C., M. R. Raupach, J. G. Canadell, G. Marland et al., “Trends in the sources and sinks of carbon dioxide,” Nature Geosc. 2.12 831-836 (2009).

Le Quéré, C.et al., “Global carbon budget 2014,” Earth Syst. Sci. Data, 7, 47–85 (2015).

Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R., “Historical greenhouse gas concentrations for climate modelling (CMIP6),” Geosci. Model Dev., 10, 2057-2116 (2017).

Mertens, M., Kerkweg, A., Jöckel, P., Tost, H., & Hofmann, C.: The 1-way on-line coupled model system MECO(n) – Part 4: Chemical evaluation (based on MESSy v2.52), Geoscientific Model Development, 9, 3545–3567, doi: 10.5194/gmd-9-3545-2016 (2016).

Messerschmidt, J. et al., “Calibration of TCCON column-averaged CO2: the first aircraft campaign over European TCCON sites,” Atmos. Chem. Phys., 11, 10765–10777 (2011).

Newman, S. et al., “Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010,”Atmos. Chem. Phys., 13, 4359–4372 (2013).

Nisbet, E. G., Dlugokencky, E. J., and Bousquet, P., “Methane on the rise-again,” Science, 343, 493–495 (2014).

Numata K., et al., “Fast-switching methane lidar transmitter based on a seeded optical parametric oscillator,” Appl. Phys. B 116(4), 959–966 (2014).

O’Shea, et al., (2014), “Area fluxes of carbon dioxide, methane, and carbon monoxide derived from airborne measurements around Greater London: A case study during summer 2012,” J. Geophys. Res. Atmos., 119, 4940–4952, doi:10.1002/2013JD021269.

Patra, P.K.; Houweling, S.; Krol, M.; Bousquet, P.; Belikov, D.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M.P.; Corbin, K., et al., “Transcom model simulations of ch4 and related species: Linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere.,” Atmospheric Chemistry and Physics, 11, 12813-12837 (2011).

Peischl, J., et al., "Quantifying sources of methane using light alkanes in the Los Angeles basin, California." J. Geophys. Res. Atmos.118.10: 4974-4990 (2013).

Pillai, D., C. Gerbig, J. Marshall, R. Ahmadov, R. Kretschmer, T. Koch, and U. Karstens, “High resolution modeling of CO2 over Europe: implications for representation errors of satellite retrievals,” Atmos. Chem. Phys. 10: 83-94 (2010).

Rella, C. W., Chen, H., Andrews, A. E., Filges, A., Gerbig, C., Hatakka, J., Karion, A., Miles, N. L., Richardson, S. J., Steinbacher, M., Sweeney, C., Wastine, B., and Zellweger, C., “High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air,” Atmos. Meas. Tech., 6, 837-860 (2013).

Riris, H.; Numata, K.; Li, S.; Wu, S.; Ramanathan, A.; Dawsey, M.; Mao, J.; Kawa, R.; Abshire, J.B., “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt., 51, 8296-8305 (2012).

Sarrat, C., Noilhan, J., Lacarrère, P., Donier, S., Lac, C., Calvet, J.C., Dolman, A.J., Gerbig, C., Neininger, B., Ciais, P., Paris, J.D., Boumard, F., Ramonet, M., Butet, A.: Atmospheric CO2 Modeling at the Regional Scale: Application to the CarboEurope Regional Experiment, J. Geophys. Res., 112(D12105) (2007).

Saunois, M.; Bousquet, P.; Poulter, B.; Peregon, A.; Ciais, P.; Canadell, J.G.; Dlugokencky, E.J.; Etiope, G.; Bastviken, D.; Houweling, S., et al. The global methane budget 2000–2012. Earth Syst. Sci. Data, 8, 697-751 (2016).

Schneising, O., et al., “Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations,” Earth's Future, 2, 11 (2014).

Singh U., et al., , “Development of a pulsed 2-micron integrated path differential absorption lidar for CO2 Measurement,” Proc. SPIE 8872, 887209 (2013).

Stephan, C., M. Alpers, B. Millet, G. Ehret, P. Flamant, and C. Deniel, "MERLIN: a space-based methane monitor", Proc. SPIE 8159, 815908 (2011).

Takagi H., T. Saeki, T. Oda, M. Saito, V. Valsala, D. Belikov, R. Saito, Y. Yoshida, I. Morino, O. Uchino, R. J. Andres, T. Yokota and S. Maksyutov, “On the Benefit of GOSAT Observations to the Estimation of Regional CO2 Fluxes,” SOLA, Vol. 7,.161-164 (2011).

Turner, A. J. et al. “Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data,” Atmos. Chem. Phys., 15, 7049–7069 (2015).

WMO World Data Centre for Greenhouse Gases, WDCGG Data Summary No. 41, March 2017.

Wofsy, S. et al., Hiaper pole-to-pole observations (hippo): Fine grained, global scale measurements of climatically important atmospheric gases and aerosols. Phil. Trans. R. Soc. A, Vol. 369 p. 2073-2086 (2011).

Wunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens, B. B., Fischer, M. L., Uchino, O., Abshire, J. B., Bernath, P., Biraud, S. C., Blavier, J.-F. L., Boone, C., Bowman, K. P., Browell, E. V., Campos, T., Connor, B. J., Daube, B. C., Deutscher, N. M., Diao, M., Elkins, J. W., Gerbig, C., Gottlieb, E., Griffith, D. W. T., Hurst, D. F., Jiménez, R., Keppel-Aleks, G., Kort, E. A., Macatangay, R., Machida, T., Matsueda, H., Moore, F., Morino, I., Park, S., Robinson, J., Roehl, C. M., Sawa, Y., Sherlock, V., Sweeney, C., Tanaka, T., and Zondlo, M. A, “Calibration of the Total Carbon Column Observing Network using aircraft profile data,” Atmos. Meas. Tech., 3, 1351-1362, doi:10.5194/amt-3-1351-2010, (2010).

Wunch, D., G. C. Toon, J.-F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg, “The total carbon column observing network,“ Philosophical Transactions of the Royal Society - Series A: Mathematical, Physical and Engineering Sciences, 369(1943), 2087-2112, doi:10.1098/rsta.2010.0240 (2011).

Xueref-Remy I., et al., “Variability and budget of CO2 in Europe: analysis of the CAATER airborne campaigns – Part 2: Comparison of CO2 vertical variability and fluxes between observations and a modeling framework,” Atmos. Chem. Phys., 11, 5673-5684 (2011).

 

 


Impressum / Imprint - Datenschutzerklärung / Privacy Policy