Theme DYN-2

← back to Scientific Themes

Gravity waves in the Southern Hemisphere

The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was the first comprehensive measurement program devoted to quantifying the evolution of GWs arising from sources at lower altitudes as they propagate upward, interact with mean and other wave motions, and ultimately dissipate in the mesosphere and lower thermosphere (MLT) (Fritts et al. 2016). The key objective was to ”observe and understand the end-to-end dynamics of GWs from the ground to the edge of space”, Eckermann et al. (2018). To achieve this goal, coordinated ground-based and airborne observations were conducted in New Zealand. The DLR Institute of Atmospheric Physics deployed the research aircraft Falcon, provided regular radiosonde soundings, and conducted more than 800 h of ground-based Rayleigh lidar observations of stratospheric and mesospheric temperatures. The published papers include an overview of the atmospheric state during the DEEPWAVE period (Gisinger et al. 2017), case studies (Bramberger et al. 2017, Ehard et al. 2017, Heller et al. 2017, Portele et al. 2018), and climatological studies investigating the relation of low-level forcing and middle atmosphere response (Kaifler et al. 2015). Furthermore, there are numerous DLR contributions to papers of the international DEEPWAVE community, e.g., Fritts et al. (2016), Smith et al. (2016), Bossert et al. (2015), Eckermann et al. (2018).

The BMBF-funded research in the project GW-LCYCLE in Northern Europe led to additional insights which are documented in publications of the participating institutions (Matthias et al. 2016, Dörnbrack et al. 2017, Hildebrand et al. 2017, Kaifler et al. 2017b, Krisch et al. 2017, Stober et al. 2017, Wagner et al. 2017, Witschas et al. 2017, Baumgarten et al. 2018, Rapp et al. 2018). There are three major conclusions from these studies which are relevant for motivating the observational and numerical work being planned and conducted for SOUTHTRAC:

  1. Long-term ground-based observations of temperature and wind in the stratosphere and the MLT are essential to understand and simulate the deep GW propagation as well as dissipation during GW breaking events as both processes are controlled by diurnal and semi-diurnal tides (Eckermann et al. 2016, Gisinger et al. 2017, Eckermann et al. 2018).
  2. Coordinated airborne observations of GW patterns in the upper troposphere/lower stratosphere (UTLS) are key to classify the vertical and horizontal propagating components (Krisch et al. 2017, Wagner et al. 2017, Witschas et al. 2017); in particular, observations below, at and above flight level need to be combined. Additional airborne observations of flow pattern and temperature perturbations in the MLT can lead to spectacular new insights into the horizontal propagation pathways and the dissipative processes responsible for the momentum deposition (Bossert et al. 2015, Pautet et al. 2016, Bossert et al. 2017, Fritts et al. 2018).
  3. Numerical modeling across all scales from global to regional is decisive in connecting and interpreting the scattered observations (Ehard et al. 2018, Fritts et al. 2018); furthermore, the extension of our modeling capabilities into the MLT seems to be the prerequisite to expand our knowledge about the momentum deposition by breaking GWs (Heale et al. 2014, Heale and Snively 2015, Bramberger et al. 2017, Heale et al. 2017).

Research about GWs in the region around South America has been conducted by the particiants from FZJ and DLR for a long time, (e.g., Eckermann and Preusse 1999, Preusse et al. 2002). The results of DEEPWAVE and GW-LCYCLE reinforced the interest in the oblique propagation of OGWs (e.g., Ehard et al. 2017, Krisch et al. 2017).

The flow across the Southern Andes and the Antarctic Peninsula excites OGWs propagating downstream, a prominent and persistent phenomenon occurring every winter and spring in the SH. The observed large GWMFs are partly reproduced by high-resolution NWP models such as the ECMWF IFS which resolves a major part of the GW spectrum (e.g. Wu and Eckermann 2008, Preusse et al. 2014). However, for most regions of enhanced GWMFs around 60°S the GW sources are still unspecified. Filtering of GWs from a homogeneous non-orographic source by the background winds mimics the salient patterns seen in the satellite observations except for the South America (Ern et al.2006, Preusse et al. 2009). Searching for actual source processes, however, a puzzle emerges: though the maximum GWMF is around 60°S, the main mountain ridges, but also indicators of convective GW sources and fronts (Holt et al. 2017) are located either further equatorward (around 40°S) or poleward over the Antarctic Continent.

Oblique propagation of mountain waves was reproduced by coupling an orographic source to ray-tracing (e.g. Eckermann and Preusse 1999, Preusse et al. 2002). Wu and Eckermann (2008) suggested that oblique propagation connects the GW sources in the storm tracks with the stratospheric GWMF maximum and find evidence for this in the orientation of the wave fronts in the ECMWF model data. In a more general context, ray-tracing also indicated the focusing of GWs into the PNJ (Preusse et al. 2009, Sato et al. 2009, Kalisch et al. 2014). However, these studies indicated propagation into the jet over the entire stratosphere while super-pressure balloon observations find the 60°S-maximum already at 18 km (Plougonven et al. 2013). Recent observations from the GW-LCYCLE project by GLORIA combined with ray-tracing modeling present evidence that extreme oblique propagation transfers large amounts of GWMF already below 20 km altitude (Krisch et al. 2017).

In a sensitivity study, Cai (2015) showed the effect of varying the strength of NOGWD: while a simulation without NOGW exhibits a clear cold bias in the polar stratosphere, enhancing NOGWs leads to an enhanced warm bias. At the same time, also PWs are affected, and enhancing the NOGWD also leads to stronger PW activity in the winter stratosphere, increasing temperatures further. Thus, a non-linear response to imposed GWD occurs (in agreement with Cohen et al. 2013), complicating the estimation of needed additional sources further. The lack of success of simply tuning existing GW parameterizations to reach a certain climate state in GCMs strongly emphasizes the need for more physical approaches to better represent the modelled and parameterized GW activity in climate models. The first important step is to validate GWMFs and drag toward observations, high-resolution modeling and drag estimates from reanalysis.


Baumgarten, Kathrin, Michael Gerding, Gerd Baumgarten, and Franz-Josef Lübken (2018). “Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding”. In: Atmos. Chem. Phys. 18.1, pp. 371–384. DOI: 10.5194/acp-18-371-2018.

Bossert, Katrina, David C. Fritts, Pierre-Dominique Pautet, Bifford P. Williams, Michael J. Taylor, Bernd Kaifler, Andreas Dörnbrack, Iain M. Reid, Damian J. Murphy, Andrew J. Spargo, and Andrew D. MacKinnon (2015). “Momentum flux estimates accompanying multiscale gravity waves over Mount Cook, New Zealand, on 13 July 2014 during the DEEPWAVE campaign”. In: J. Geophys. Res. Atmos. 120.18, pp. 9323–9337. DOI: 10.1002/2015jd023197.

Bramberger, Martina, Andreas Dörnbrack, Katrina Bossert, Benedikt Ehard, David C. Fritts, Bernd Kaifler, Christian Mallaun, Andrew Orr, P.-Dominique Pautet, Markus Rapp, Michael J. Taylor, Simon Vosper, Bifford P. Williams, and Benjamin Witschas (2017). “Does Strong Tropospheric Forcing Cause Large-Amplitude Mesospheric Gravity Waves? A DEEPWAVE Case Study”. In: J. Geophys. Res. Atmos. 122.21, pp. 11, 422–11, 443. DOI: 10.1002/2017jd027371.

Cai, D. (2015). “Investigation of stratospheric variability from intra-decadal to seasonal time scales.” PhD thesis. Ludwig-Maximilians-Universität München.

Cohen, Naftali Y., Edwin P. Gerber, and Oliver Bühler (2013). “Compensation between Resolved and Unresolved Wave Driving in the Stratosphere: Implications for Downward Control”. In: J. Atmos. Sci. 70.12, pp. 3780–3798. DOI: 10.1175/jas-d-12-0346.1.

Dörnbrack, Andreas, Sonja Gisinger, Michael C. Pitts, Lamont R. Poole, and Marion Maturilli (2017). “Multilevel Cloud Structures over Svalbard”. In: Mon. Weather Rev. 145.4, pp. 1149–1159. DOI: 10.1175/mwr-d-16-0214.1.

Eckermann, S. D. and Peter Preusse (1999). “Global Measurements of Stratospheric Mountain Waves from Space”. In: Science 286.5444, pp. 1534–1537. DOI: 10.1126/science.286.5444.1534.

Eckermann, Stephen D., Dave Broutman, Jun Ma, James D. Doyle, Pierre-Dominique Pautet, Michael J. Taylor, Katrina Bossert, Bifford P. Williams, David C. Fritts, and Ronald B. Smith (2016). “Dynamics of Orographic Gravity Waves Observed in the Mesosphere over the Auckland Islands during the Deep Propagating Gravity Wave Experiment (DEEPWAVE)”. In: J. Atmos. Sci. 73.10, pp. 3855–3876. DOI: 10.1175/jas-d-16-0059.1.

Eckermann, Stephen D., Jun Ma, Karl W. Hoppel, David D. Kuhl, Douglas R. Allen, James A. Doyle, Kevin C. Viner, Benjamin C. Ruston, Nancy L. Baker, Steven D. Swadley, Timothy R. Whitcomb, Carolyn A. Reynolds, Liang Xu, N. Kaifler, B. Kaifler, Iain M. Reid, Damian J. Murphy, and Peter T. Love (2018). “High-Altitude (0–100 km) Global Atmospheric Reanalysis System: Description and Application to the 2014 Austral Winter of the Deep Propagating Gravity Wave Experiment (DEEPWAVE)”. In: Mon. Weather Rev. 146.8, pp. 2639–2666. DOI: 10.1175/mwr-d-17-0386.1.

Ehard, Benedikt, Bernd Kaifler, Andreas Dörnbrack, Peter Preusse, Stephen D. Eckermann, Martina Bramberger, Sonja Gisinger, Natalie Kaifler, Ben Liley, Johannes Wagner, and Markus Rapp (2017). “Horizontal propagation of large-amplitude mountain waves into the polar night jet”. In: J. Geophys. Res. Atmos. 122.3, pp. 1423–1436. DOI: 10.1002/2016jd025621.

Ern, M., P. Preusse, and C. D. Warner (2006). “Some experimental constraints for spectral parameters used in the Warner and McIntyre gravity wave parameterization scheme”. In: Atmos. Chem. Phys. 6.12, pp. 4361–4381. DOI: 10.5194/acp-6-4361-2006.

Fritts, David C., Ronald B. Smith, Michael J. Taylor, James D. Doyle, Stephen D. Eckermann, Andreas Dörnbrack, Markus Rapp, Bifford P. Williams, P.-Dominique Pautet, Katrina Bossert, Neal R. Criddle, Carolyn A. Reynolds, P. Alex Reinecke, Michael Uddstrom, Michael J. Revell, Richard Turner, Bernd Kaifler, Johannes S. Wagner, et al. (2016). “The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An Airborne and Ground-Based Explo- ration of Gravity Wave Propagation and Effects from Their Sources throughout the Lower and Middle Atmosphere”. In: Bull. Amer. Meteor. Soc. 97.3, pp. 425–453. DOI: 10.1175/bams-d-14-00269.1.

Fritts, David C., Simon B. Vosper, Bifford P. Williams, Katrina Bossert, John M. C. Plane, Michael J. Taylor, P.- Dominique Pautet, Stephen D. Eckermann, Christopher G. Kruse, Ronald B. Smith, Andreas Dörnbrack, Markus Rapp, Tyler Mixa, Iain M. Reid, and Damian J. Murphy (2018). “Large-Amplitude Mountain Waves in the Meso- sphere Accompanying Weak Cross-Mountain Flow During DEEPWAVE Research Flight RF22”. In: J. Geophys. Res. Atmos. 123.18, pp. 9992–10, 022. DOI: 10.1029/2017jd028250.

Gisinger, Sonja, Andreas Dörnbrack, Vivien Matthias, James D. Doyle, Stephen D. Eckermann, Benedikt Ehard, Lars Hoffmann, Bernd Kaifler, Christopher G. Kruse, and Markus Rapp (2017). “Atmospheric Conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE)”. In: Mon. Weather Rev. 145.10, pp. 4249–4275. DOI: 10.1175/mwr-d-16-0435.1.

Heale, C. J., K. Bossert, J. B. Snively, D. C. Fritts, P.-D. Pautet, and M. J. Taylor (2017). “Numerical modeling of a multiscale gravity wave event and its airglow signatures over Mount Cook, New Zealand, during the DEEPWAVE campaign”. In: J. Geophys. Res. Atmos. 122.2, pp. 846–860. DOI: 10.1002/2016jd025700.

Heale, C. J. and J. B. Snively (2015). “Gravity wave propagation through a vertically and horizontally inhomogeneous background wind”. In: J. Geophys. Res. Atmos. 120.12, pp. 5931–5950. DOI: 10.1002/2015jd023505.

Heale, C. J., J. B. Snively, and M. P. Hickey (2014). “Numerical simulation of the long-range propagation of grav- ity wave packets at high latitudes”. In: J. Geophys. Res. Atmos. 119.19, pp. 11, 116–11, 134. DOI: 10.1002/2014jd022099.

Heller, Romy, Christiane Voigt, Stuart Beaton, Andreas Dörnbrack, Andreas Giez, Stefan Kaufmann, Christian Mallaun, Hans Schlager, Johannes Wagner, Kate Young, and Markus Rapp (2017). “Mountain waves modulate the water vapor distribution in the UTLS”. In: Atmos. Chem. Phys. 17.24, pp. 14853–14869. DOI: 10.5194/acp-17-14853-2017.

Hildebrand, Jens, Gerd Baumgarten, Jens Fiedler, and Franz-Josef Lübken (2017). “Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar”. In: Atmos. Chem. Phys. 17.21, pp. 13345– 13359. DOI: 10.5194/acp-17-13345-2017.

Holt, L. A., M. J. Alexander, L. Coy, C. Liu, A. Molod, W. Putman, and S. Pawson (2017). “An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation”. In: Q. J. R. Meteorol. Soc. 143.707, pp. 2481–2495. DOI: 10.1002/qj.3101.

Kaifler, Bernd, Natalie Kaifler, Benedikt Ehard, Andreas Dörnbrack, Markus Rapp, and David C. Fritts (2015). “Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere”. In: Geophys. Res. Lett. 42.21, pp. 9488–9494. DOI: 10.1002/2015gl066465.

Kaifler, N., B. Kaifler, B. Ehard, S. Gisinger, A. Dörnbrack, M. Rapp, R. Kivi, A. Kozlovsky, M. Lester, and B. Liley (2017). “Observational indications of downward-propagating gravity waves in middle atmosphere lidar data”. In: J. Atmos. Sol. Terr. Phys. 162, pp. 16–27. DOI: 10.1016/j.jastp.2017.03.003.

Kalisch, Silvio, Peter Preusse, Manfred Ern, Stephen D. Eckermann, and Martin Riese (2014). “Differences in gravity wave drag between realistic oblique and assumed vertical propagation”. In: J. Geophys. Res. Atmos. 119.17, pp. 10, 081–10, 099. DOI: 10.1002/2014jd021779.

Krisch, Isabell, Peter Preusse, Jörn Ungermann, Andreas Dörnbrack, Stephen D. Eckermann, Manfred Ern, Felix Friedl-Vallon, Martin Kaufmann, Hermann Oelhaf, Markus Rapp, Cornelia Strube, and Martin Riese (2017). “First tomographic observations of gravity waves by the infrared limb imager GLORIA”. In: Atmos. Chem. Phys. 17.24, pp. 14937–14953. DOI: 10.5194/acp-17-14937-2017.

Matthias, V., A. Dörnbrack, and G. Stober (2016). “The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016”. In: Geophys. Res. Lett. 43.23, pp. 12, 287–12, 294. DOI: 10.1002/2016gl071676.

Pautet, P.-D., M. J. Taylor, D. C. Fritts, K. Bossert, B. P. Williams, D. Broutman, J. Ma, S. D. Eckermann, and J. D. Doyle (2016). “Large-amplitude mesospheric response to an orographic wave generated over the Southern Ocean Auckland Islands (50.7S) during the DEEPWAVE project”. In: J. Geophys. Res. Atmos. 121.4, pp. 1431–1441. DOI: 10.1002/2015jd024336.

Plougonven, Riwal, Albert Hertzog, and Lionel Guez (2012). “Gravity waves over Antarctica and the Southern Ocean: consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations”. In: Q. J. R. Meteorol. Soc. 139.670, pp. 101–118. DOI: 10.1002/qj.1965.

Portele, Tanja C., Andreas Dörnbrack, Johannes S. Wagner, Sonja Gisinger, Benedikt Ehard, Pierre-Dominique Pautet, and Markus Rapp (2018). “Mountain-Wave Propagation under Transient Tropospheric Forcing: A DEEPWAVE Case Study”. In: Mon. Weather Rev. 146.6, pp. 1861–1888. DOI: 10.1175/mwr-d-17-0080.1.

Preusse, P., M. Ern, P. Bechtold, S. D. Eckermann, S. Kalisch, Q. T. Trinh, and M. Riese (2014). “Characteristics of gravity waves resolved by ECMWF”. In: Atmos. Chem. Phys. 14.19, pp. 10483–10508. DOI: 10 . 5194 / acp- 14 – 10483-2014.

Preusse, Peter, Andreas Dörnbrack, Stephen D. Eckermann, Martin Riese, Bernd Schaeler, Julio T. Bacmeister, Dave Broutman, and Klaus U. Grossmann (2002). “Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study”. In: J. Geophys. Res. Atmos. 107.D23, CRI 6–1–CRI 6–23. DOI: 10.1029/2001jd000699.

Preusse, Peter, Stephen D. Eckermann, Manfred Ern, Jens Oberheide, Richard H. Picard, Raymond G. Roble, Martin Riese, James M. Russell, and Martin G. Mlynczak (2009). “Global ray tracing simulations of the SABER gravity wave climatology”. In: J. Geophys. Res. 114.D8. DOI: 10.1029/2008jd011214.

Rapp, Markus, Andreas Dörnbrack, and Bernd Kaifler (2018). “An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data”. In: Atmos. Meas. Tech. 11.2, pp. 1031–1048. DOI: 10.5194/amt-11-1031-2018.

Sato, K., S. Watanabe, Y. Kawatani, Y. Tomikawa, K. Miyazaki, and M. Takahashi (2009). “On the origins of meso- spheric gravity waves”. In: Geophys. Res. Lett. 36.19. DOI: 10.1029/2009gl039908.

Smith, Ronald B., Alison D. Nugent, Christopher G. Kruse, David C. Fritts, James D. Doyle, Steven D. Eckermann, Michael J. Taylor, Andreas Dörnbrack, M. Uddstrom, William Cooper, Pavel Romashkin, Jorgen Jensen, and Stu- art Beaton (2016). “Stratospheric Gravity Wave Fluxes and Scales during DEEPWAVE”. In: J. Atmos. Sci. 73.7, pp. 2851–2869. DOI: 10.1175/jas-d-15-0324.1.

Stober, Gunter, Vivien Matthias, Christoph Jacobi, Sven Wilhelm, Josef Höffner, and Jorge L. Chau (2017). “Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16”. In: Ann. Geophys. 35.3, pp. 711–720. DOI: 10.5194/angeo-35-711-2017.

Wagner, Johannes, Andreas Dörnbrack, Markus Rapp, Sonja Gisinger, Benedikt Ehard, Martina Bramberger, Benjamin Witschas, Fernando Chouza, Stephan Rahm, Christian Mallaun, Gerd Baumgarten, and Peter Hoor (2017). “Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolution?” In: Atmos. Chem. Phys. 17.6, pp. 4031–4052. DOI: 10.5194/acp-17-4031-2017.

Witschas, Benjamin, Stephan Rahm, Andreas Dörnbrack, Johannes Wagner, and Markus Rapp (2017). “Airborne Wind Lidar Measurements of Vertical and Horizontal Winds for the Investigation of Orographically Induced Gravity Waves”. In: J. Atmos. Oceanic Technol. 34.6, pp. 1371–1386. DOI: 10.1175/jtech-d-17-0021.1.

Wu, Dong L. and Stephen D. Eckermann (2008). “Global Gravity Wave Variances from Aura MLS: Characteristics and Interpretation”. In: J. Atmos. Sci. 65.12, pp. 3695–3718. DOI: 10.1175/2008jas2489.1.

Impressum / Imprint - Datenschutzerklärung / Privacy Policy